

Touch gesture recognition using body capacitance

Project Report

Raivis Strogonovs 625826

BEng Computer Engineering

Mr. Hassan Parchizadeh

Dr. Rinat Khusainov

School of Engineering
Faculty of Technology

May 2014

Page | 2

1 Table of Contents
2 Introduction ... 4

2.1 Problem description .. 4

2.2 Outcomes and goals .. 4

2.3 GD system architecture ... 5

2.4 Organization of the report .. 6

3 Background research ... 6

3.1 Capacitive touch sensing ... 6

3.1.1 Measuring charge time .. 7

3.1.2 Distributing the voltage between the object and another capacitor 7

3.2 Capacitive touchscreens .. 8

3.3 Current capacitive technology evaluation ... 10

3.4 Similar research ... 10

3.5 Disney touché .. 10

3.6 SmartSkin ... 11

4 Designing GD system ... 13

4.1 Hardware ... 13

4.1.1 Initial design .. 13

4.1.1.1 Initial circuit ... 14

4.1.1.2 PWM frequency sweep ... 16

4.1.1.3 Hardware prototypes .. 17

4.1.2 Function generator AD9850 .. 18

4.1.2.1 Programming AD9850 ... 18

4.1.2.2 AD9850 Library methods and usage ... 23

4.1.3 Amplification and electrode excitation stage .. 24

4.1.3.1 Thevenin Equivalent Circuit ... 24

4.1.4 Peak detector and buffer stage ... 29

4.1.5 Wireless communication – Bluetooth ... 31

4.1.5.1 HC-06 Bluetooth module ... 31

4.1.6 Main processing unit ... 33

4.1.6.1 TI ARM TMS570 ... 33

4.1.6.1.1 Problems with Texas Instruments TMS570 ... 36

4.1.6.2 Atmel Xmega16e5 ... 37

4.1.6.2.1 Breakout board .. 38

Page | 3

4.1.6.2.2 Configuring xmega system clock ... 39

4.1.6.2.3 Configuring USART for serial communication with Bluetooth 41

4.1.6.2.4 Configuring ADC .. 44

4.1.6.2.5 GD systems firmware .. 45

4.1.7 PCB manufacturing and circuit design ... 47

4.1.7.1 PCB etching .. 47

4.1.7.2 Final circuit and PCB design ... 49

4.1.8 Conclusion ... 50

4.2 Software .. 50

4.2.1 Qt library .. 50

4.2.2 Support Vector Machines (SVM) ... 51

4.2.2.1 Theory .. 51

4.2.2.2 LibSVM ... 53

4.2.3 Main application .. 56

4.2.3.1 MainWindow class ... 56

4.2.3.2 Learner class .. 59

4.2.3.3 Settings class.. 59

4.2.3.4 SerialTerminal class ... 60

4.2.3.5 SimulateKeyboard class ... 61

5 Testing ... 62

6 Conclusion ... 64

Appendices .. 66

7 Logbooks .. 110

8 Bibliography ... 122

Page | 4

2 Introduction

2.1 Problem description
These days most touch sensitive devices are designed either to recognize where it has been

touched or whether is touched or not. Many objects around us in everyday life can be

potentially used as touch interactive surface providing they are made out of conductive

material. With the conventional way it would only be possible to detect whether the object

has been touched or not. However, by exciting the object with different frequencies it is

possible to detect how much skin is touching it. Essentially the system could recognize

whether the object is grabbed, pinched, touched by one or more fingers or any other

gesture which have different amount of skin touching it. There are many surfaces, objects

and liquids which can be transformed into touch sensitive devices without additional

buttons or touchscreens like door handles, mobile phones, lamps, desks, walls etc. With this

technology we could extend the human-computer interaction with everyday objects via

simple and inexpensive solution. As mentioned early only requirement of the object is it

being conductive or in worst case scenario a conductive material has to be implemented in

the object, since it’s not mandatory to touch directly the sensor, due to its ability to sense

human interaction with its magnetic field.

2.2 Outcomes and goals
Main goal of the project was to develop and design a device which would be able to do GD

(gesture detection) on the objects connected to it. This would include designing and making

the main PCB and writing software for the PC and Android smart phones. However, due to

lack of time and unforeseen challenges it was infeasible.

As mentioned above one of the goals was designing and making the main PCB for learning

purposes. This process includes:

1. Designing the PCB in Eagle CAD software

2. Etching the PCB in home environment

3. Applying solder mask

4. Soldering

For the software side of the project, the main goals were as following:

1. Design PC side application in C++/Qt

2. Learn LibSVM and write a wrapper to simplify user interactions with it

3. Port the application mentioned in 1st point for smart phones

Most of the goals were successfully achieved, except for increasing the device sensitivity.

One of the requirements was to develop a sensor which can be interfaced with human skin

directly and used as touch interface. Unfortunately, the current design wasn’t able to excite

the human body in different frequencies enough to detect change from the input signal. On

the other hand, the GD system is able to sense the presence of human body and

differentiate from multiple gestures when touching a conductive object, including liquids. As

of now GD system could be used for detecting gestures on objects only, with some

Page | 5

modification it can be potentially used as smart light switch, where different gestures enable

different lighting in the room or by manufacturing a copper frame in a smart phone, the GD

system could sense how is the phone being held in hand.

2.3 GD system architecture
Standard way of doing capacitive touch sensing is by using one fixed frequency. However GD

system is using a technique called frequency sweep, which enables to do capacitive touch

sensing in multiple frequencies. For example, in frequencies ranging from 100 kHz up to 50

Mhz.

For frequency sweep the micro-processor will generate AC signal in specific frequency range

to excite the electrode. The electrode can be any surface connected to the ADC of the micro-

processer. The micro-processor measures the amplitude of the specific frequency the

electrode was excited. Essentially, constructing spectrum for different levels of excitement.

By varying the capacitance the spectrum should in theory change. A human touch basically

changes, in almost all cases increases, capacitance. The way human is touching the

electrode, or the amount of skin contacted with the electrode will produce a different

output. In other words, electrical properties of human touch will change the excitement

spectrum. Then by using simple machine learning algorithms like SVM or neural network,

for pattern recognition, the way of human touching the electrode can be detected. In short,

with frequency sweep technique it is not only possible to detect a touch, but as well how it

was touched. Interestingly this is all achieved through single electrode. Please see Figure

A-1 for the basic architecture of the touch sensing technique

Figure A-1 Touch sensing architecture

The technique of frequency sweep has already been used for various medical applications.

For example, already in year 1979 it was proposed to be used for analysis of neuromuscular

junction continuity1. As well it has been used for wireless communication and different

kinds of proximity sensors.

1
 http://informahealthcare.com/doi/abs/10.3109/03091907909160663

Page | 6

The project is highly inspired by Disney’s research called touché2. More or less they are using

exactly the same approach GD system is using.

There are two more articles (projects) which are using frequency sweep technique to do

touch recognition. Both of them have been highly inspired by touché and they constructed

much cheaper version of the touché. Sprites 3method involves using a standard AVR micro-

controller to do frequency sweep from 0-3.5MHz. For recognition, just like touché Sprite is

using SVM algorithm. And the other one by DZL 4 reconstructed touché using arduino,

however for gesture recognition he is measuring the highest point of the frequency sweep.

Which is very unreliable compared to pattern recognition using machine learning.

Even though both of the “cheap” implementations are using PWM for exciting the electrode,

the GD system is using a proper sine wave generator, just like touché. More precisely it uses

AD9850 function generator. This unit can generate up to 50MHz pure sine wave. The

decision was made to use a proper sine wave generator because of the electrical properties

of the human body. More than 99% of the human body’s resistance is at the skin on average

which is about 1MΩ5. On the other hand AC signal can pass through the human skin and go

through the least impedance in the corresponding phase and amplitude of AC signal.

Internal human resistance is around 100Ω.

2.4 Organization of the report
The report is organized is organized by first introducing with relevant theory and afterwards

with small incremental steps the actual process is explained. Some details are left out

because at the time of writing they seemed obvious or too basic. Almost all chapters and sub

chapters are supported by diagrams to better grasp the underlying theory and practical

accomplishments.

3 Background research
There has been tremendous research done on interacting with computers in different ways,

like developing tactile displays, infrared multi-touch surfaces, hand gesture recognition via

camera, infrared white-board touch detection, acoustic touch sensing etc.

However, the most related touch detection technology to this project is capacitive touch

sensing. Mainly due to being relatively cheap technology for basic touch detection, excluding

capacitive touch screens.

3.1 Capacitive touch sensing
Mainly there are two approaches used when building a capacitive touch sensing device:

1. Measuring charge time

2. Distributing the voltage between the object and another capacitor

2
 http://www.disneyresearch.com/wp-content/uploads/touchechi2012.pdf

3
 http://spritesmods.com/?art=engarde&page=1

4
 http://dzlsevilgeniuslair.blogspot.se/2012/05/arduino-do-touche-dance.html

5
 http://www.meo.etc.upt.ro/materii/cursuri/IBM/1.pdf

Page | 7

3.1.1 Measuring charge time

This is the simplest and most intuitive approach to use as capacitive touch sensing

technology. Basically, it consists of the object being connected between two pins to a micro-

controller see Figure A-1. By enabling pin 1 we set the timer to run and wait until pin 2 read

logic 1, at that point the timer should be stopped. And we have ourselves the charge time.

Depending whether the object is being touched or not the charge time will change

significantly.

Figure A-1 Capacitive touch sensing by measuring charge time

This circuit is just a simple RC charging circuit, which can be described as following:

Where R is the resistor attached to object and C is the objects capacitance. is the cutoff

frequency. However for simple capacitative detection, the system engineer only needs to be

aware of the R variable and measure the . Obviously from these two parameters it is

possible to calculate the objects capacitance. However, just by measuring the charge time it

is possible to determine if the object is touched or not, no need for calculating the

capacitance, since it is possible to calculate what would be the charge time of the object not

being touched, and if the charge time changes by significant amount a touch has been

detected.

3.1.2 Distributing the voltage between the object and another capacitor

This is slightly more complicated way to detect a touch using capacitance. However,

compared to the other method, the touch can be detected using only one pin from the

micro-controller. It consists of charging the object or the capacitive button (C1), while

discharging the capacitor which holds the sample for ADC to convert (C2), and then

connecting those two capacitors in parallel for the charge to be distributed between them. If

the capacitance of C1 is equal to C2 the resulting voltage should be half of the reference

voltage, in most micro-controller design it would 2.5 V, since they are using 5V as reference.

If C1 is less than C2 it’s the resulting voltage would be more than 2.5 V and if C1 has higher

capacitance than C2 its resulting voltage would be more than 2.5V accordingly. Ideally, when

Page | 8

a finger is placed on the touch sensitive button, the resulting C1 capacitance should become

higher than when idle and increasing the resulting voltage correspondingly. See Figure A-1

and Figure A-2 for visualizing the process described above.

Figure A-1 Step 1: Discharge the ADC sample holding capacitor (C2) and charge the objects or buttons capacitor
(C1)
Source: http://tuomasnylund.fi/drupal6/content/capacitive-touch-sensing-avr-and-single-adc-pin

Figure A-2 Step 2: Connect C1 and C2 to distribute charge between them and initiate ADC conversion
Source: http://tuomasnylund.fi/drupal6/content/capacitive-touch-sensing-avr-and-single-adc-pin

3.2 Capacitive touchscreens
Nowadays most commonly used capacitive touch sensing technologies are touchscreens.

Basically there are two types of capacitive touchscreens – surface capacitive sensing and

projected capacitive sensing. In our everyday smart phones you’ll probably find a projected

capacitive sensing technology, where the screen consists of a grid for X and Y. By moving a

conductive material over the screen, in most cases a finger, it interacts with the magnetic

field of the screen and it is possible to calculate where in the grid the most interaction was

http://tuomasnylund.fi/drupal6/content/capacitive-touch-sensing-avr-and-single-adc-pin
http://tuomasnylund.fi/drupal6/content/capacitive-touch-sensing-avr-and-single-adc-pin

Page | 9

detected (See Figure A-1). Essentially this technology can construct 2D image of the touch

event, and it is able to detect multiple touches simultaneously. We can imagine that

projected capacitive touchscreen is a matrix of thousands of small buttons.

Figure A-1 Projected capacitive touchscreen, with fingers placed on the grid
Source:

http://www.digitimes.com/supply_chain_window/story.asp?datepublish=2010/11/29&pages=PR&seq=202

Before multi-touch capacitive touchscreens, there was a simpler version of the technology

where, a small amount of voltage is applied to every corner of the screen (see Figure A-2)

and when the user touches the screen a small amount of current is consumed by the human

body. By measuring the ratio between the current consumption from each corner it is

possible to calculate where the finger was placed. The closer the finger to corresponding

corner the more current is consumed accordingly. Note: This technology supports single

touch.

Figure A-2 Surface capacitive touch sensing
Source: http://www.electrotest.com.sg/cap_touch.htm

Page | 10

3.3 Current capacitive technology evaluation
For their corresponding purposes both technologies mentioned above are quite reliable.

However, each technology has its own limitations as well. For example, a capacitive

touchscreen is quite expensive due to construction of a capacitive grid. On the other hand,

standard capacitive touch sensing can only detect whether a touch event has occurred or

not. It is not able to distinguish between multiple touches or gestures. See Table 3-1 for

comparison between GD system and two approaches mentioned above.

Feature Capacitive touch
sensing button

Capacitive
touchscreen

GD system

Multiple touches No Yes, with ability to
calculate position

Yes, cannot
calculate position

Responsiveness Medium High Low, limited to ADC
speed

Cost Very cheap Expensive Cheap
Easiness of
implementation

Very easy, needs
one or two
components, low
processing power
required

Hard, needs high
processing power,
due to analyzing
data as 2D image of
the touch event,
also difficult to
manufacture due to
multiple
microscopic layers
used in
construction

Medium. Requires
only conductive
object and couple
small components.

Range of
application

High, can be used
and applied
everywhere. The
conductive material
can be bent and
transformed as
necessary. Any
conductive material
can be used as
sensor

Low, mainly limited
to flat surfaces,
constructing a
flexible grid makes
the technology even
more expensive

High, just like with
capacitive touch
sensing, relatively
anything conductive
can be used as a
sensor.

Table 3-1 Comparison between commonly used capacitive touch technologies and GD system

The main limitation of advanced touch sensing technology is that it can’t be easily shaped in

any form necessary. Most of such technologies are limited to rectangular and flat shapes.

However, GD system has the ability to be interfaced with an object in basically any shape,

like a door handle or a glass cup etc.

3.4 Similar research

3.5 Disney touché
Over the years there have been a lot of similar research and projects regarding the problems

mentioned above. This project itself is highly inspired by one in particular – touché. They

have essentially done exactly what this project intended to do, detecting different touch

Page | 11

gestures using frequency sweep. In other words, they were extending the capabilities of

standard capacitive touch button. Initially this project was intended to extend the original

capabilities of the touché project; however, due to unforeseen difficulties this project was

only able to reproduce some of the features of the touché. There are some notable

differences, like choices of programming languages. The GD system application can be

potentially ported to any architecture and OS with little or no changes at all to the code –

Linux, Windows, Mac, Android, iOs. Also this project has been designed to use less expensive

components. They were using ARM microprocessor, which are generally more expensive

than xmega micro-controllers. Only reason ARM micro-processor was considered while

designing GD system was the potential of recognizing the gesture on the microprocessor

itself. Neither of us accomplished that task.

However, touché accomplished higher sensitivity of the device, than GD system did.

Probably due to more accurate ADC, higher current applied to object and better designed

filtering system. While design GD system, those were the main limiting factors and

challenges when working on this project.

3.6 SmartSkin
SmartSkin is a touch sensing technology very similar to the capacitive touchscreens. It also

uses a grid for detecting touch in 2D. The main difference between projected capacitive

touchscreens and SmartSkin is that they are exciting the grid’s Y axis and reads the result in

its X axis. The X axis itself acts as antenna. When a human interacts with the magnetic field,

it draws some power away from the original signal, essentially reducing the amplitude of the

sine wave. By multiplexing through each column and reading the resulting sine wave

amplitude in each of the X axis sensors, they are able to construct a 2D image of the

magnetic fields interaction with the human (See Figure A-1 and Figure A-2). Afterwards it’s

just using simple computer vision algorithms for detecting finger tip touches and

determining their positions.

Figure A-1 SmartSkin sensor mesh for detecting touch
Source: https://vs.inf.ethz.ch/edu/SS2005/DS/papers/surfaces/rekimoto-smartskin.pdf

Page | 12

Figure A-2 Output from the SmartSkin mesh
Source: https://vs.inf.ethz.ch/edu/SS2005/DS/papers/surfaces/rekimoto-smartskin.pdf

This technology might seem very different from GD system. It is quite interesting, because

SmartSkin is using similar technique to excite the grid. Even though, instead of frequency

sweep they are exciting in one fixed frequency, they are basically doing the same

measurements as the GD system. Also GD system with very little tweaking could be adapted

to this technology. Only addition necessary is a multiplexer to select column to excite with

sine wave and multiplexer for receiving at the X axis.

Due to modular design of the GD device an interface module for such technology can be

designed and constructed without altering the original system. However, it would involve

writing completely separate PC side application for analyzing the data, since they are very

different from what the GD system is detecting and sending to the software.

Page | 13

4 Designing GD system
Mainly designing the GD system consists of two distinctive parts – hardware design and

software design. The firmware for the micro-controllers will be considered part of hardware

design in this report. The GD system was being designed while taking into account system

scalability, portability and ease of use. It should be rather easy to add more modules to the

system than it has as of now.

4.1 Hardware

4.1.1 Initial design

At the very beginning, GD system was prototyped with Arduino, with very basic frequency

sweep circuitry. Where instead of using proper sine wave function generator, a PWM was

used. Main draw backs of using the PWM was that, the DC signals can only propagate

through the skin. Due to this reason, the GD system sensitivity is reduced significantly.

Figure A-1 Overall design of the initial GD system

In Figure A-1 we can see that as previously mentioned, the task project was divided in to two

parts. However, the initial design will be only about the hardware, because the PC interface

changed very slightly throughout the project. And the basic communications principles

between the initial design and current software are essentially the same.

Page | 14

4.1.1.1 Initial circuit

See Figure A-1 for initial circuit diagram using Arduino.

Figure A-1 Initial design circuit diagram

The circuit basically consists of two parts, LC circuit for filtering out unwanted frequency

components from the square wave, essentially outputting sine wave shaped signal and bare

bone envelope detector with discharging resistor.

The envelope detector’s (R2, D1, and C2) cut off frequency can be calculated the same way

as for low-pass filter via:

Note that envelope detector here is used as peak detector. It doesn’t need to follow the

carrier signals envelope; the output should be the highest amplitude of the signal.

From the calculations we can assume that all frequencies above 1.59 kHz should produce the

peak value, because higher frequency shouldn’t let the capacitor C2 discharge. Also, it

means that the frequency sweep between two frequencies have to change slower than 1.59

kHz, to give enough time for the envelope detector to settle. Because in the circuit a diode is

used, more specifically 1n4148, which is a standard signal diode, 0.6 V will be lost from the

original signal, due to characteristics of the diode. Due to this cut-off frequency, the

frequency sweep has to start above 1.59 kHz, initially GD system started frequency sweep at

2 kHz.

We can calculate the resonant frequency for the LC (C1 and L1 in circuit diagram) circuit

using the following equation:

Page | 15

By assuming that electrodes or objects capacitance is very small, the highest amplitude from

the input signal will be around 16 kHz. When a human touches the object, or interacts with

its magnetic field the resonant frequency will change, and produce the highest amplitude in

different frequency.

For example if human touch added 20nF of capacitance to the LC circuit, then the resonant

frequency should be around:

See Figure A-2 and Figure A-3 how resonant frequency is changed when interacting with the

sensor. The change might be small, but it can be clearly visible that the resonant frequency

changed from around 55th frequency reading to around 59th frequency.

Then either by detecting where the peak is located or, just applying machine learning, we

can distinguish the gesture.

Figure A-2 Amplitude (in raw ADC format) vs frequency (stored in array from 2kHz to 3.5 MHz). Hand near by
the sensor

Figure A-3 Amplitude (in raw ADC format) vs frequency (stored in array from 2kHz to 3.5 MHz). Idle sensor, no
human interaction

Page | 16

4.1.1.2 PWM frequency sweep

The AVR Atmel micro-controllers conveniently are able to produce a PWM signal from 0 to

3.5 Mhz. The touché system used a frequency sweep from 0-3.5 Mhz.

In the initial implementation of the frequency sweep consists of 160 frequencies. Ranging

from 0 Hz up to 16Mhz with 100kHz step.

This is how we can set up the wave generator in AVR

 TCCR1A=0b10000010; //-Set up frequency generator

 TCCR1B=0b00011001; //-+

Basically it is set in Fast PWM mode, with TOP being ICR1A register

And compare mode is set to:

Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at

BOTTOM, (non-inverting mode)

And clock selected without pre-scaler.

For AVR it means that the timer works with FCPU frequency, which in Arduino case is 16

MHz. Also it is taking 160 different frequencies. That means 16MHz / 160 = 100 kHz as one

step frequency. Hence, the device is sweeping from 0Hz up to 16MHz

While doing experiments with the touch sensitive surface interesting results were produced.

Considerable change could be detected when an electrode was attached to the water, which

was in a glass container. Immediately the resulting output signal was much more stable

coming from the glass itself, instead of the liquid. The insulating material (glass) helped to

make the finger and the water to act as a proper capacitor. Due to this “discovery” the

normal electrode was tested by insulating with mylar also known as BoPET polyester film,

which has high dielectric properties and is commonly used to make foil capacitors. Just like

expected the reliability of the system increased significantly.

See AppendixE for initial designs source code.

Page | 17

4.1.1.3 Hardware prototypes

Figure A-1 Early prototype assembled in breadboard

Figure A-2 the breadboard prototype transferred to a PCB

Page | 18

4.1.2 Function generator AD9850

After successful initial prototype, the following task was to interface a sine wave generator

to increase the sensitivity of the device. As mentioned in the introduction, by using AC signal

instead of DC the sensor’s signal can propagate through internal fluids in human body,

increasing the sensitivity by extending the range of frequencies responding to human

interactions.

For the AC generator any pure function generator IC should do the task reasonably well.

However, it was decided to use AD9850 function generator, due to its low cost and

development breakout board availability see Figure A-1. AD9850 is able to produce a pure

sine wave up to 40 MHz.

Figure A-1 AD9850 breakout board
Source: http://tpatphoto.com/images/tpat/BI/TPAT-BI00076.jpg

Obviously there are alternatives for function generators. The IC chosen in this project is

considered to be “old” and successor has already been developed - AD5932. Essentially the

new IC does the same job, as the old one. However the “old” AD9850 was chosen because

there is more documentation available online. Moreover, it was easier to buy a development

board for the AD9850, than for AD5932.

The operation of the AD9850 is rather simple; with a similar protocol to SPI the micro-

controller sends the desired sine wave. More precisely, the function generator waits for

micro-controller to send in 40 bits the frequency of the wave and its phase. Afterwards, it

will produce 4 outputs – low jitter square wave, sine wave and both of the waves inverted.

Square wave will be with amplitude of 5V and the sine wave with amplitude of 1V. The

amplitude cannot be changed. That has to be done by an amplifier. Note that the sine wave

is not AC signal, it will fluctuate between 0 and 1V instead of -0.5 to 0.5. So when designing

the amplification stage an offset was introduced to the opamp.

4.1.2.1 Programming AD9850

The AD9850 contains 40 bit register where 32 bits are for controlling the frequency, 5 bits

controlling the phase and 2 bits for power down function. The function generator can be

booted in two modes in parallel mode or serial mode. In this project to reduce the number

of pins used and decrease the complexity of the PCB, serial mode was chosen.

To enable serial mode pins D0 and D1 has to be connected to logic 1 and D2 to logic 0 (see

Figure A-1). Then through a SPI like protocol the data is sent through pins W_CLK, FQ_UD

and DATA. The functions of the bits in the data are shown in the Table 4-1.

http://tpatphoto.com/images/tpat/BI/TPAT-BI00076.jpg

Page | 19

Figure A-1 AD9850 configured in serial mode

Table 4-1 Serial load bit function assignments
6

Figure A-2 Serial load frequency/phase updating sequence
6

According to the datasheet, the Table 4-1 and Figure A-2, the data is sent starting from least

significant bit (LSB) of the frequency and finishing with the most significant (MSB) bit of the

6
 Table/figure is an extract from AD9850 datasheet: http://www.analog.com/static/imported-

files/data_sheets/AD9850.pdf

Page | 20

phase. Also when all 40 bits have been sent, FQ_UD is triggered so the AD9850 stores the

received data in its register responsible for generating the output.

Corresponding to the datasheet (page 8) the output frequency is determined by the

following equation:

Where is the value of the 32 bit frequency word, confusing because one would

expect “phase” to be actually the phase of the sine wave, which it isn’t;

CLKIN is the input reference frequency, in case of the development board used in the project

it is 125 MHz;

 is the output frequency in MHz;

When designing a library to interface the AD9850, obviously the equation was transformed

that the input is the desired frequency () and the output is the 32 bit value (

So if a desired frequency was 2 kHz, then which would be sent to the AD9850 would

be calculated like this:

However, the actual phase for the generated wave is stored in 5 bits, with an increment of

11.25°. In the library, the phase 5 bit value is calculated as following:

By following the information and calculations above two libraries were constructed - one for

Arduino and one for Xmega16e5. Due to their similar architectures, the libraries are

essentially the same. However, Arduino provides a very convenient way of addressing pins

via their own numbering system, while pure AVR C doesn’t support such arguments to be

passed to the constructor. So in xmega library in the AD9850.h the engineer must provide

the PORT group. In the case of the project it was PORTC. See Figure A-3 for flowchart

implementing above instructions.

Page | 21

Figure A-3 Flowchart for function which sends the desired frequency and phase to AD9850

To further optimize the speed of communication later it was decided that phase won’t be

necessary in the case of this project and also to reduce the computation time the frequency

can be sent as calculated 32 bit integer. More or less the flowchart for the additional

function is the same; it skips the phase calculation and frequency calculation and sends the

frequency integer which was provided as an argument immediately.

The initial frequency integer can be calculated only once at the very beginning when the

micro-controller is initializing. In addition, the necessary incremental step can be calculated

as an integer as well only once at the initialization stage, further reducing computation time.

It won’t be as intuitive to set the frequency though. See Figure A-4 for function generator

library testing.

Page | 22

Figure A-4 Function generator output measure by oscilloscope and putty sending which frequency to set.
As you can see the measured frequency differs by 0.06 kHz. It could be number of things, but most likely it’s
the cheap USB oscilloscope - Hantek 6022BE

One of the problems encountered while interfacing the AD9850 was noisy input pins (see

Figure A-5). The AD9850 is able to read the pins in very high speeds (according to datasheet

the maximum clock speed can be around 285 MHz) and the slightest noise on the channel

can be read as an input. Apparently the noise was coming from unwanted and accidental

resonant circuit. To fix it on every input pin small resistor was introduced, in case of this

project 75Ω (See Figure A-6).

Figure A-5 Measured input from the micro-controller to the AD9850 without the 75Ω resistors. Note the very
narrow lines are the noise on the channel.

Measured

frequency:

8.065 kHz

Frequency sent to

device: 8.12 kHz

Page | 23

Figure A-6 Transmission between micro-controller and AD9850 with the 75Ω resistors on the line. As you can
see there is no noise at all

4.1.2.2 AD9850 Library methods and usage

As briefly mentioned before, in Arduino library the engineer in the constructor (the library is

written as a Class in C++ instead of C) just needs to specify which corresponding pin is

assigned to the function generator. However, the xmega’s library has additional

configuration properties in the AD9850.h file to set the PORT group. Other than that, the

constructor also accepts pin numbers, but associated to the PORT group.

In both devices you would construct the object as following:

AD9850 funcGenerator(W_CLK, FQ_UD, DATA, RESET);

The next two steps are as following to initialize the function generator:

funcGenerator.init(); //Sets all pins to logic 0
 funcGenerator.doReset(); // will do reset sequence and set output to 0Hz

To change the frequency of the function generator, the engineer can choose to execute one
of these methods:

1. funcGenerator.osc(2000,0); // Sets AD9850 to generate 2 kHz wave with 0
phase. Arguments are as following (frequency in Hz, phase in degrees)

2. funcGenerator.oscInt(34359); // Sets AD9850 to generate 1 kHz wave with
0 phase. Only argument is the integer corresponding which is acceptable
to AD9850

The library which was ported for xmega, with little or even no modification can be used for

all Atmel AVT mega series (note, there is no X) micro-controllers. Due their similiarity in

syntax.

Page | 24

4.1.3 Amplification and electrode excitation stage

Since sine wave signal generated by AD9850 doesn’t come as AC and has amplitude of 1V,

the next step was to design simple amplification circuit. TI OPA830 was chosen due to its

high-speed and high ratings by other engineers.

OPA830 is classified as low-power, single power supply, voltage feedback amplifier. It can

operate on single power supply between +3V or +5V and if necessary it can be configured to

operate on ±5V. Bandwidth of the opamp is 250 MHz with a slew rate of 550V/µs. Even

though the final frequencies used are only in range from 0-300kHz, the OPA830 allows the

GD system to be expanded further and adapted for different environments.

Initially, the minimum slew rate was calculated necessary for frequency sweep from 0 to 3.5

MHz and with peak to peak of 5V:

So it means that for the GD system to be able to work in the desired frequency range an

opamp with minimum slew rate of 109.95 V/µs is needed. As previously mentioned, much

faster opamp was chosen, whose maximum frequency can be calculated as following:

Basically the GD system with the current design can potentially do a frequency sweep up to

17.5 MHz with signal peak to peak of 5V.

4.1.3.1 Thevenin Equivalent Circuit

For the amplification a non-inverting configuration for the op-amp was used. However, a

slightly more complicated version was used due to the necessity for offsetting the incoming

signal to produce true AC.

In many circuits potentiometer circuits can be simplified with Thevenin’s theorem. The

theorem allows converting a more complicated circuit consisting only from resistors, voltage

sources and current sources in equivalent voltage source connected in series with a resistor

(see Figure A-1).

Figure A-1 Example of Thevenin's theorem, where circuit on the left is simplified to equivalent circuit on the
right

Page | 25

Basically, we have to convert Figure A-2 circuit to a Thevenin equivalent (Figure A-3) Voltage

(Vthe) and Thevenin resistance (Rthe). In our case Vthe is the same as Vos (no load present)

and Rthe.

Figure A-2 the real life model

Figure A-3 Necessary thevenin equivalent

In the diagram above, VPOS is positive voltage and VN is negative voltage. Also N in the

equation is state of the potentiometer in normalized form. And Vpot is the output voltage

from potentiometer.

1. First we can replace the potentiometer with its thevenin equivalent (see Figure A-4)

and then substitute it back into original circuit.

Figure A-4 Potentiometer equivalent circuit with two resistors

Page | 26

2. To find the potentiometers resistance (Rpot) we can just short out the source VPOS

and VN, essentially making the two resistors parallel

3. So the final steps are to substitute the Thevenin circuit for the potentiometer into

the original circuit and find the thevenin replacement. (See Figure A-5)

Figure A-5 Thevenin equivalent circuit of the potentiometer

4. The equation can be further simplified, if we assume that R2 < R1 and Re < R1, then

it becomes:

At this stage we have Vos and Rthe expressions which are necessary for Thevenin substitute.

Now consider this non-inverting amplification circuit (see Figure A-6):

Figure A-6 Non-inverting amplification circuit with potentiometer for offsetting the output

Page | 27

The output voltage (Vout) in that kind of circuit would equal:

With the assumptions made previously we know that Rthe = R2 and if further we assume

that R2 < Ri, then R2 can be ignored. Basically using Thevenin theorem the circuit simplifies

to one shown in Figure A-7.

Figure A-7 Potentiometer substituted in Thevenin network

Now we can calculate the resistors necessary for the amplification of the original signal. For

now we shall assume that Vos is 0V to simplify the choosing of the resistors – Rf and Ri.

The input signal’s maximum voltage is 1 V (Vin), the ADC of xmega16e5 ideally works up to

2.54V. So since we taken out offset of Vos, we need to calculate the amplification 2*2.54 ≈ 5

V, because afterwards the signal will be shifted by half to make a true AC signal. And we end

up sending back to xmega16e5 the maximum value of 2.5V. Also let’s choose the Rthe as

100 Ω. Note that the equation for calculating Vout starts to be almost exactly like for a

normal non-inverting amplifier.

The values which were chosen for this stage in the circuit are as following:

1. Rf = 62 kΩ

2. Ri = 16 kΩ

3. Rthe = 100 Ω

Page | 28

4. R1 = 10 kΩ

The values should produce an AC signal from -2.42 V to 2.42 V, providing the potentiometer

is correctly calibrated. See figure for the circuit responsible for the offset stage and object

excitation.

Figure A-8 Circuit for amplification and offset + object excitation

Note the 10mH inductor L1, which is used as bias inductor in this circuit. This is a common

practice, to narrow the excitation range of the signal. In other words it compresses the

frequency response range from high frequencies like 20 Mhz to the range of 3.5Mhz.

Page | 29

4.1.4 Peak detector and buffer stage

Obviously micro-controller isn’t able to easily read the amplitude of a sine wave signal. It is

possible by sampling the signal in high frequency at least 2 times the frequency of the input

signal. Which in the case of GD system is very inconvenient and with most micro-controllers

impossible, due to the frequencies used in the system. A more convenient way of detecting

the amplitude of the signal is to use a peak detector also known as precision rectifier. By

using such device the micro-controller just needs to read the analog value as it would be

done normally, no need for sampling. Also it extends the range of signals whose amplitude

can be read with micro-controller.

The peak detector (precision rectifier) basically consists of a super diode, which is just an

opamp in voltage follower mode with a feedback loop after signal diode. In such

configuration the opamp compensates the 0.6 voltage drop introduced by the diode. Hence

it’s called super diode, because it doesn’t have voltage drop.

Another essential part of the peak detector is to store the highest voltage in some sort of

capacitor. If only a capacitor is used without automatic reset, the capacitor can be almost

any value. However, if automatic reset is introduce in the system, then the value of capacitor

and reset resistor has to be calculated to fit your frequencies by using standard low pass

filter equation.

Figure A-1 Peak detector with manual reset function, which can be controlled via micro-controller

Only at the very beginning GD system was using peak detector as seen in Figure A-1. After

understanding what frequencies would be involved and the convenience of not resetting the

detector after every frequency, it was decided to use peak detector with the resistor R1

permanently connected to the ground, essentially making an automatic reset.

First of all before choosing the resistor for automatic peak detector it was necessary to

measure how quick the frequencies are changing, so we could give the maximum time

available to charge the capacitor.

Page | 30

The speed measured was 8.4 sweeps a second. One sweep consisted of 160 data points. In

total 160*8.4 = 1344 peaks were detected a second. Note that the peaks detected a second

is proportional of the frequency between measurements, which is 1.3 kHz.

Basically we need to choose resistor and a capacitor which would let frequencies lower than

1.3 kHz through the system. Which is very convenient since, the starting frequency of the

system is around 2 kHz, and in some cases it was changed to 20 kHz. Fun fact: Some

engineers consider calibrating peak detector as black art.

Assuming we have 100nF capacitor used then the resistor would be:

Since a resistor of 1.18 kΩ doesn’t exist, a 1.2 kΩ will be used, hence the cut-off frequency

will become:

By using a resistor of 1.2 kΩ the cut-off frequency will be 1.32 kHz, which is very close to the

desired frequency response. There will be negligible loss. However, even bigger resistor can

be used to further filter the peak detectors data; obviously more data is lost in the process.

There is one more issue to be addressed with peak detector. When micro-controller reads

the value directly from the peak detector, it discharges the capacitor and in the process

some data is lost. To avoid unwanted discharge, in precision peak detector GD system is

using another opamp as buffer. Due to high input impedance of the opamp, it is possible to

configure it in voltage follower mode and read the value of the capacitor without discharging

it. The final circuit for precision peak detector ended up as seen in Figure A-2.

Figure A-2 Precision peak detector, with buffer stage to avoid unwanted discharge while reading the value

Page | 31

4.1.5 Wireless communication – Bluetooth

For communication between PC and GD hardware it was decided to use wireless technology,

more precisely Bluetooth technology. Bluetooth enables the hardware to link with any

device which supports it, including computers, smart phones etc. In other words, it gives the

GD system more freedom of usage.

Bluetooth technology is a standard for exchanging data in short distances, using 2.4 GHz to

2.485 Ghz. For different functions there are different protocols available for Bluetooth.

Some of them are Link management protocol (LMP), Audio/video remote control profile

(AVRCP), Radio frequency communication (RFCOMM) etc. With those protocols Bluetooth

can be used to do wide range of tasks with generic drivers available in the devices, network

access, serial communication, message exchange, human interface emulation (mouse,

keyboard, joysticks etc.), printing service and many more.

Initially it was decided that gesture recognition could be done on the GD system hardware

and HID (human interface device) profile could be used to interface with the phone and

computer. Unfortunately due to unforeseen difficulties with the ARM processor that had to

be dropped for time being.

Instead of HID profile, GD system uses Serial Port Profile (SPP), which basically acts as

wireless serial port. More precisely, it emulates RS-232 protocol, which is commonly used by

any micro-controller. Due to this reason it was quite easy to interface it. Also SPP is the most

familiar form of communication when it comes to micro-controllers, where there is no need

for special drivers; it’s all supported by OS. Even more attractive is that this profile is

supported by Android and iOS devices. However, to use the SPP with Apple products the

engineer has to acquire RFCOMM license from them. Another notable feature of Bluetooth

technology is that other than Apple’s RFCOMM license it doesn’t need any license to be used

with rest of the device. The Bluetooth special interest group encourages the usage of their

technology, only thing asking in return is acknowledgment that their technology is being

used.

4.1.5.1 HC-06 Bluetooth module

HC-06 (See Figure A-1) Bluetooth module probably is the cheapest such device on the

market. Obviously it only supports one profile which is the Serial Port Profile. Nonetheless it

is great for prototyping and supports quite fast baud rates up to 1382400 bps.

Figure A-1 HC-06 Bluetooth module with SPP support

Note that there is HC-05 as well, which is slightly more advanced version of Bluetooth, it also

supports master mode, where basically other SPP enabled Bluetooth devices are able to

connect to it. On the contrary HC-06 is only able to act in slave mode. The pinouts and

Page | 32

firmware for HC-06 and HC-05 are essentially the same. The main difference is that HC-05

expects “\n\r” after every command and HC-06 doesn’t.

Stock HC-06 runs in baud rate of 9600. Its identifier name is “HC-06” and default pin 1234.

Obviously the module can be programmed to whatever name, pin code and baud rate

necessary for the application. See Table 4-2 for programming commands accepted by HC-06

Command Response Comment

AT OK Verifies that it has entered programming mode

AT+VERSION OKlinvorV1.8 Return firmware’s version

AT+NAMEblu OKsetname Sets the module’s name to “blu”

AT+PIN1234 OKsetPIN Sets the PIN to “1234”

AT+BAUD1 OK1200 Sets baud rate to 1200

AT+BAUD2 OK2400 Sets baud rate to 2400

AT+BAUD3 OK4800 Sets baud rate to 4800

AT+BAUD4 OK9600 Sets baud rate to 9600 (default)

AT+BAUD5 OK19200 Sets baud rate to 19200

AT+BAUD6 OK38400 Sets baud rate to 38400

AT+BAUD7 OK57600 Sets baud rate to 57600

AT+BAUD8 OK115200 Sets baud rate to 115200

AT+BAUD9 OK230400 Sets baud rate to 230400

AT+BAUDA OK460800 Sets baud rate to 460800

AT+BAUDB OK921600 Sets baud rate to 921600

AT+BAUDC OK1382400 Sets baud rate to 1382400
Table 4-2 HC-06 list of programming commands

The programming mode is entered automatically when the Bluetooth module is first

powered up and stays in it until it gets connected to a master. Note that programming has to

be done by directly interfacing with the Bluetooth module. It cannot be done wirelessly.

HC-06 needs to be programmed only once, it stores its configuration in his own EEPROM

memory and next it will boot up with the properties specified earlier. In the case of GD

system the module is configured to communicate with baud rate of 115200 bps, it has name

of “kulaks” (which in my native Language means “fist”) and PIN code has been left as it is by

default “1234”.

The GD system board is designed to allow interfacing with the HC-06 directly on the board

for more convenient programming. Otherwise it would only be possible through xmega16e5

micro-controller. But now any serial device can be connected for

communication/programming like FTDI232. However it is very important to remember that

the module works in 3.3 V logic level, if 5V are applied it may damage the device!

When integrating the Bluetooth module on the GD system main board, it had the option to

connect indicator LED to the module (See Figure A-2). Basically, the LED is able to show two

states of the HC-06. If the LED is blinking it means that the Bluetooth module is in AT mode

(programming mode) or in active search mode (not connected/paired).

Page | 33

Figure A-2 HC-06 Bluetooth interface circuit diagram with current state LED connected

4.1.6 Main processing unit

One of the integral parts of the project was to choose the main processing unit. At the very

early stage in the project development it was decided that the pattern recognition could be

done on the microprocessor itself. By doing so, the final gesture could be sent to the PC or

smart phone, significantly reducing the amount of data transmitted between them. Multiple

ARM platforms were considered to accomplish this task, ranging from rather slow 32 bit

ARM microprocessors to Raspberry Pi. Unfortunately, due to lack of support and

documentation for the chosen TI ARM CPU this solution was eventually dropped in favor of

Atmel’s new Xmega series micro-controllers.

4.1.6.1 TI ARM TMS570

The first micro-controller chosen for the project was Texas Instruments ARM TMS570

microprocessor based on Cortex R4 family. Which is a quite cheap microprocessor, but is

able provide high performance. It is able to clock up to 180 MHz, has 12 bit DAC and

hardware support floating point operations.

As mentioned earlier multiple ARM processors were considered see Table 4-3.

Page | 34

Feature STM32
Discovery

Raspberry Pi NXP LPC1769 TMS570

ADC 1x16 channels NA 1x8 Channels 2x24 Channels
ADC resolution 12 bit NA 12 bit 12 bit
Max clock
speed

72 MHz 1 GHz 100 MHz 180 MHz

RAM 128Kb 512 Mb 64 Kb 192 Kb, can be
extended,
support EMIF7

GPIO pins 80 26 70 58
SPI 2 1 1 3
I2C 2 1 3 1
USART 2 1 4 2
Program
Memory

512 Kb >1 Gb 512 Kb 1280 Kb

Price £ 26.70 £ 29.95 £ 19.80 £ 11.20
Table 4-3 Comparison between MCUs considered while building GD system

Most of the functions provided by the micro-controllers wouldn’t be used anyway, because

GD system basically only needs 4 main features – Fast ADC, High performance, enough RAM

for pattern recognition and at least one USART.

Due to fixed RAM size STM32 and NXP LPC1769 were quickly discarded and it had to be

chosen between Raspberry Pi and TMS570. It was decided to useTMS570, because it felt

that Raspberry Pi provides way more power than it is necessary for the system. Also it is

missing ADC; an external ADC controller would be needed to be implemented. To minimize

the cost and power requirements TMS570 was chosen. A development kit was acquired

from Texas instruments for this micro-controller see Figure A-1.

Figure A-1 Texas Instruments TMS570 Hercules family development kit

7
 External memory interface, TMS570 support hardware interface with SDRAM

Page | 35

The TMS570 by default is using real time operating system (RTOS) FreeRTOS. It is free and

open source RTOS system which can be embedded in commercial products without

revealing source code. See FreeRTOS highlights in Table 4-4.

FreeRTOS highlights

Pre-emptive scheduling option Easy to use message passing

Co-operative scheduling option Round robin with time slicing

ROMable Mutexes with priority inheritance

6k to 10k ROM footprint Recursive mutexes

Configurable / scalable Binary and counting semaphores

Compiler agnostic Very efficient software timers

Some ports never completely disable
interrupts

Easy to use API

Table 4-4 FreeRTOS technology highlights
Source: http://www.freertos.org/RTOS.html

Even though RTOS is a useful addition to the MCU, also it allows for more flexibility when a

micro-controller runs RTOS, mainly due to the capabilities of multi-tasking. The way GD

system was designed there was no need for RTOS, hence no RTOS features were used while

coding the ARM development board, except for running one task which does all the

necessary computation, like reading ADC, applying filter and sending data through USART.

Also TI has made configuration for the different processes “easy”, with a code generator

called “Hercules HALCoGEN”. It allows configuring the speed of USART or setup ADC

through a GUI. See Figure A-2 for the main configuration GUI window.

Figure A-2 TMS570 configuration block diagram from HALCoGEN

http://www.freertos.org/RTOS.html

Page | 36

4.1.6.1.1 Problems with Texas Instruments TMS570

At the beginning the MCU looked very powerful, and rather easy to use. However, there

were some important things not considered when choosing TMS570. Apparently it is

important to consider the community behind the micro-controller or company, whether the

product is actually finished and the support, company is willing to give. Texas instruments

was lacking in all three. The MCU chosen for GD system basically doesn’t have any

community at all; it is a very rarely used micro-controller. However, to be successful using

the MCU community isn’t the main issue.

The most important of all is how much support the manufacturer is willing to give for their

products. It was rather surprising how Texas Instruments was lacking in this field. It seems

that TI is only capable of giving support for very basic problems, like input or output issues,

but when it comes to something more complicated like issues with RTOS suddenly they are

ignoring the question. The intention is not to bash Texas Instruments but rather warn about

potential problems when using a device or micro-controller without community. Probably, if

someone is a business partner with TI, they would have high quality support.

 Furthermore, it is important to investigate whether the chosen MCU is not half finished.

Note the gray fields in Figure A-2, those are features yet to be implemented. And for GD

system the most important feature, which is why TMS570 was chosen in first place was

EMIF, and as it can be seen in the Figure A-2, it is not yet supported. Also it was investigated

whether EMIF could be initialized by hand, but the free datasheet provided by TI is just

description of the features available in the system, nothing technical at all about registers

corresponding to a particular module.

The final issue experienced when working on this project with this MCU, was the outdated

documentation and help files. Apparently they were written for completely different system,

which is very similar to TMS570, but vector addresses for different hardware functions are

different between them, so it was quite confusing in the beginning why it wasn’t working.

Nonetheless better some kind of documentation than nothing.

Once again, the intention wasn’t to bash the Texas Instruments, but only to warn about the

potential issues and some more things to be considered when choosing a MCU. To recap, it

is mandatory to consider the company’s reputation regarding support and the community

behind them. Also it is important to remember, designing ARM development board is a

project on its own. Because of the problems experienced described above, it was decided to

switch to a familiar environment of 8bit micro-controllers, so no more time would be lost on

frustration with TI TMS570. More specifically, Atmel AVR series micro-controllers were

chosen.

Page | 37

4.1.6.2 Atmel Xmega16e5

As mentioned before, after many weeks of failures and frustration with TI TMS570 ARM

MCU, it was finally decided that a more familiar company and micro-controller should be

used for the GD system. Basically there were two main options to choose from – mega series

and Xmega series. See Table 4-5 for comparison between two equally priced AVR mega and

AVR Xmega micro-controllers.

Feature Atmega32AU XMega16E5

Max clock speed 20MHz 32MHz
ADC 1x8 Channels 2x16 Channels
ADC resolution 10 bit 12 bit
ADC speed 15 samples per second 300 ksps8
DAC NA 1x8 channels
USART 1 2
SPI 1 1
I2C 1 1
Programming interface ISP PDI
GPIO 32 26
Operating voltage 5V 3.3V
Table 4-5 Comparison between mega and xmega series micro-controller in the same price tag

It was decided to try and use the new XMega16E5 (for pinout see Figure A-1) micro-

controller, even though it was a little bit risky, since the micro-controller was release around

November 2013. By learning from previous mistakes, Atmel’s support and community

behind it was thoroughly examined. Apparently, the new XMega series micro-controllers are

very similar to the predecessor mega. The syntax is almost the same; furthermore it uses the

same environment for programming.

8
 Kilo samples per second

Page | 38

Figure A-1 Xmega16E5 pinout and block diagram
Source: xmega16e5 datasheet

4.1.6.2.1 Breakout board

The first step was to design a simple breakout board for the new XMega16E5, since there

were no development kits available on the market. Even then, Atmel provides with a lot of

material on how the PCB should be designed for xmega series.

The resulting circuit diagram and custom made PCB can be seen in Appendix A.

Overall there were no issues with the breakout board itself but rather getting the XMega to

program, that is to be recognized by a programmer. As you can see in the Table 4-5 under

programming interface section the xmega is using programming debugging interface (PDI).

PDI is a new programming standard introduced by Atmel, where compared to standard ISP it

uses only two wires for programming and debugging. ISP uses 3 wires. PDI works somewhat

similar to I2C where data line is bi-directional.

Page | 39

Any device with USART can be converted to support PDI see Figure A-1. Due to this reason a

standard USBAsp can be potentially converted to program xmega series micro-controllers

Figure A-1 PDI connection between AT90USB* and xmega series micro-controller

The possibility of converting the USBASP to support PDI was investigated. However, in the

process two xmega15e5 micro-controllers were damaged. Apparently the jumper on the

USBASP which states that it can switch between 5V and 3.3V is only for the power line, the

transmission line still works in 5V (logic 1 is 5V). See Figure A-2 for circuit diagram on how to

convert USBASP to support PDI with maximum voltage on all lines 3.3V.

Figure A-2 Standard 5V ISP to 3.3V PDI convertor
Source: http://szulat.blogspot.co.uk/2012/08/atxmega-programmer-for-050.html

Even though standard USBASP was successfully converted to support PDI, it was decided to

acquire an official AVR programmer to avoid such errors in future. More precisely, AVR ISP

MK2 was used for programming the device. One of the main advantages of an official AVR

programmer is that it can be used in Atmel Studio directly.

4.1.6.2.2 Configuring xmega system clock

There is one notable difference between setting system clock in xmega compared to mega

series. The system clock in xmega is set in run-time, basically in code itself, instead of

rewriting fuses. Many times I've accidently written incorrect fuses in the micro.

By default and on every reset the xmega's clock will be reset back to 2MHz internal clock.

And the system clock can be changed during normal operation at any time.

http://szulat.blogspot.co.uk/2012/08/atxmega-programmer-for-050.html

Page | 40

We have the following options, when choosing clock source (datasheet page 96):

1. Internal oscillators

1. 32kHz ultra low power oscillator

2. 32.768 kHz calibrated oscillator

3. 32MHz run-time calibrated oscillator

4. 8 MHz calibrated oscillator

2. External clock source

1. 0.4 MHz – 16 MHz crystal oscillator

2. External clock input

3. 32.768 kHz crystal oscillator

This section of the report will be about how to set up internal 32 MHz oscillator without

external clock calibration. If for any reason a precise 32 MHz clock is needed, please refer to

page 99 in xmega datasheet about digital frequency locked loop (DFLL). The DFLL requires

32.768 kHz external clock connected to the device. However, from tests done while

designing GD system, 32 MHz clock is precise enough for 115200 baud rate for USART. No

data corruption has been encountered while sending data.

It was surprisingly simple to set up internal clock source for Xmega16e5. First, in OSC_CTRL

register we must enable the clock source which we intend to use with the micro-controller.

In the case of GD system bit 1 RC32MEN has to be set high to enable internal 32 MHz clock.

See Table 4-6.

Table 4-6 Register summary for oscillator

More details about the individual bits in OSC_CTRL register see datasheet page 104.

After internal 32 MHz clock has been enabled, a good practice is to wait until the clock

stabilizes. As it can be seen in table there is a register called STATUS. The register holds

information whether a particular clock has stabilized or not. If it has stabilized, the

corresponding bit will be set to HIGH. In the case of GD system, again bit 1 RC32MRDY has to

be checked.

After initializing the internal crystal, for us to be able to switch to it, first it’s necessary to

trigger configuration change protection mechanism and the clock source has to be changed

in 4 clock cycles. For more details please refer to page 13 in datasheet. The internal 32 MHz

Page | 41

clock can be selected in CLK_CTRL register, with bits SCLKSEL. See Table 4-7 for possible

SCLKSEL configurations.

Table 4-7 System clock selection
Source xmega16e5 datasheet

After carefully following the datasheet, the internal 32 MHz clock can be selected with the

following code:

void setUp32MhzInternalOsc()
{
 OSC_CTRL |= OSC_RC32MEN_bm; //Setup 32Mhz crystal

 while(!(OSC_STATUS & OSC_RC32MRDY_bm));

 CCP = CCP_IOREG_gc; //Trigger protection mechanism
 CLK_CTRL = CLK_SCLKSEL_RC32M_gc; //Enable internal 32Mhz crystal

}

4.1.6.2.3 Configuring USART for serial communication with Bluetooth

The first thing to do when setting up serial communication is to specify the baud rate. 32

MHz clock will be used for calculations. Xmega16E5 datasheet provides equations for

calculating baud rate for different USART modes. See Table 4-8.

Page | 42

Table 4-8 Equations for calculating Baud Rate register setting
Source: xmega16e5 datasheet

The USART for micro-controller has to be configured in 115200 bps and in Asynchronous

mode, just like HC-06 Bluetooth module. With assumption that BSCALE with 0 and USART in

double speed mode will produce usable BSEL value, the calculations are as following:

The fbaud with BSEL of 34 would be:

The error with BSEL being 34 would be 0.79%, which is acceptable.

There is nothing particularly special setting up the serial, it is more or less described quite

thoroughly in the datasheet. However, notable feature implemented in XMega architecture

is the ability to remap functional pins. In case of GD system, serial RX and TX pins were

remapped in a more convenient position for designing PCB.

By default RX and TX pins for USART0 are pins PC3 and PC2, as mentioned before they were

remapped. More precisely, GD system has remapped USART0 to PC6 and PC7 accordingly.

You can see the functions of the PORTC in Table 4-9.

Page | 43

Table 4-9 PORTC alternative functions
Source: xmega16e5 datasheet

Every group of ports have a REMAP register, and just by following the instructions in the

register you can switch between the alternative functions of the pins in the corresponding

port. See Table 4-10 with REMAP register for PORTC in xmega16e5.

Table 4-10 Pin Remap register
Source: xmega16e5 datasheet

Basically we end up configuring the serial communication as following:

void SerialC::setUpSerial()
{
 //For the sake of example, I'll just REMAP the USART pins from PC3 and PC2
to PC7 and PC6
 PORTC_REMAP |= 0x16; //See page 152 in datasheet, remaps the USART0

 PORTC_OUTSET = PIN7_bm; //Let's make PC7 as TX
 PORTC_DIRSET = PIN7_bm; //TX pin as output

 PORTC_OUTCLR = PIN6_bm;
 PORTC_DIRCLR = PIN6_bm; //PC6 as RX

 // Baud rate selection
 // BSEL = (32000000 / (2^0 * 8*115200) -1 = 34.7222 -> BSCALE = 0
 // FBAUD = ((32000000)/(2^0*8(34+1)) = 114285.71 -> it's alright

 USARTC0_BAUDCTRLB = 0; //Just to be sure that BSCALE is 0
 USARTC0_BAUDCTRLA = 0x22; // 34

 //Disable interrupts
 USARTC0_CTRLA = 0;
 //8 data bits, no parity and 1 stop bit
 //USARTC0_CTRLC = USART_CMODE0_bm | USART_PMODE0_bm | USART_CHSIZE_8BIT_gc;
 USARTC0_CTRLC = USART_CHSIZE_8BIT_gc;

 //Enable receive and transmit
 USARTC0_CTRLB = USART_TXEN_bm | USART_CLK2X_bm | USART_RXEN_bm; // And
enable high speed mode

}

Page | 44

4.1.6.2.4 Configuring ADC

The final module used in GD system hardware is the ADC. As mentioned in the table

xmega16e5 has 12 bit ADC with ability to do 300 thousand samples per second. The ADC can

be configured for single-ended or differential measurements. Also it has built in

programmable amplification circuit. The ADC can provide unsigned and signed results.

Like for any other micro-controller the ADC conversion can be initiated either via software or

external interrupt. However, it also has the ability to automatically initiate conversion in

specific time intervals with a system called EDMA the conversion results can automatically

be transferred to specified memory location.

The GD system’s ADC has been configured to operate in single-ended conversion, which is

the basic and most common type of ADC. Also it has been set to use external reference,

which is pin PA0, and PA1 is set as ADC input.

ADCA_CH0_CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc; //Configure ADC conversion as
single ended
ADCA_CH0_MUXCTRL = ADC_CH_MUXPOS_PIN1_gc; // Set ADC to pin1, or PA1, because PA0
= AREFA

 Obviously by default ADC isn’t enabled to do 300 thousand conversions per second. To do

that, it is necessary to disable current protection mechanism, or in case of GD system it was

lowered to LOW protection mechanism (see Table 4-11), essentially doing slightly less

conversions than 300k.

The sample rate can be calculated using the following equation:

 Fadc is ADC clock speed (GD system has it configured Fclk/32

 Resolution is either 8 or 12 bits

 sampval is the value programmed in the sampling control register (by default 0)

 gainfactor is the internal amplification, by default it is 0 (which means 1x gain)

By taking all variables into account the sample rate of the GD system is as follows:

Table 4-11 Table of maximum conversion rate in respect to current limit
Source: xmega16e5 datasheet

Page | 45

The configuration in AVR C++ code translates as following:

void setUpADC()
{
 ADCA_CH0_CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc; //Configure ADC conversion
as single ended
 ADCA_CH0_MUXCTRL = ADC_CH_MUXPOS_PIN1_gc; // Set ADC to pin1, or PA1,
because PA0 = AREFA

 //Sample rate = 166666 samples.
 // 1000000/(0.5*(12+0)+0) = 166666
 // See page 351
 ADCA_CTRLB = ADC_CURRLIMIT_LOW_gc | ADC_RESOLUTION_12BIT_gc; //Low current
limit, up to 225ksps, and 12 bit resolution
 //ADCA_CTRLB = ADC_FREERUN_bm;
 //ADCA_REFCTRL = ADC_REFSEL_INTVCC_gc; // Internal reference VCC/1.6
 ADCA_REFCTRL = ADC_REFSEL_AREFA_gc; // External reference AVCC - 0.6
 ADCA_PRESCALER = ADC_PRESCALER_DIV32_gc; // Prescaler div 4

 ADCA_CTRLA = ADC_ENABLE_bm; //Enable ADC

}

Note that xmega series micro-controllers aren’t able to read higher voltage than AREF-0.6V.

Maximum AREF can be 3.6V. In case of GD system it is 3.3V, with a jumper it can be switched

to very stable 2.7V. Furthermore, a constant 0.135 must be subtracted, due to properties of

the ADC

According to datasheet to extract the voltage following calculations must be done:

4.1.6.2.5 GD systems firmware

The firmware of GD system is designed in a way that engineer can interact with the device at

any time. Basically, on every cycle the firmware checks whether any new commands have

been received via USART. See Table 4-12 for available commands.

Command Result

T Will test communication between Bluetooth
and PC using printf and scanf functions

N Increments current output frequency by
single step calculated for frequency sweep

B Decreases current output frequency by
single step calculated for frequency sweep

R Resets the output frequency

C It will prompt user to enter new
configuration for frequency sweep, in the
following structure: [min,max,sweeps].

S Stop frequency sweep

D Start frequency sweep

Q Hard Resets the GD hardware
Table 4-12 List of supported commands programmed in GD system

Page | 46

When frequency sweep has been initiated and all the necessary samples have been

collected, the data is low pass filtered and then sent through USART in the following

structure:

{156.77 324.33 134.32 24.56 112.56 … 123.98 90.12}

Note that the first and last data points are not separated by space between curly brackets,

rest of the data points are separated. Data which are received in the curly brackets will be

interpreted as the results from frequency sweep at the PC end.

See Appendix B for firmware code and Figure A-1 for firmware’s flowchart

Figure A-1 Flowchart of the GD system's firmware

Page | 47

4.1.7 PCB manufacturing and circuit design

4.1.7.1 PCB etching

One of the essential tasks of the project was to design and manufacture a PCB for the GD

system. Manufacturing PCB at home environments is not an easy task. Many limitations

apply when designing PCB which can be etched:

1. Vias should be as thick as possible

2. Vias can’t be filled, they must be soldered from both sides with a small wire

3. Don’t use wire with width less than 0.012 inch, smaller will almost definitely result in

broken pathways when etching

4. The smaller the circuit the easier it is to etch it

5. If possible avoid double sided boards, otherwise another level of complexity is

introduced in manufacturing process

At home enviorement there are two common ways of manufacturing the PCB. They only

differ from the method how the circuit is transferred to the copper plate. The actual etching

between those two methods is the same.

1. Toner transfer

2. Photoresist coating transfer

Toner transfer can be only done if the circuit is printed on a glossy paper with a laser printer.

Then with laminator by heating up the glossy paper placed downwards on the copper plate,

most of the powder will be transferred to the plate.

Photoresist method allows usage of ink printers. This is the method used when

manufacturing GD PCB, also this method will be described in detail further in this section.

1. Preparing the picture of the PCB

Obviously the manufacturing starts with PCB design, which is then printed on A4

sized paper. Note each side is printed separately and without any silkscreen

components. Then to make the paper transparent, it just needs to be soaked in

cooking oil. If a double side board will be etched, the two pieces of PCB must be

glued together to form a pocket for copper plate.

2. Preparing the copper board.

The copper board needs to be cut slightly bigger than the PCB being made.

Afterwards it must be sanded with very fine sand paper to get rid of unnecessary

lamps and make the surface more even. Finally the plate must be cleaned from any

dust particles and grease with acetone. If any particles will be left on it or grease, the

board will etch at those points much slower than places where it is clean. By waiting

until dirty places are etched valuable copper wires could be destroyed in the

process.

Page | 48

3. Coating the copper board

Place the copper board in air tight and opaque container. And by using positive 20,

the plate should be coated with photoresist lacquer. If double sided board is being

manufactured, first coat one side and heat the container with 65°C for 15 min. Then

turn the board around coat the other side and continue heating the container for

further 25 min.

4. Transferring PCB image to the copper plate

First place the copper plate in the transparent pocket and expose each side in UV

oven for 1:50 min. Then place the board in photoresist developer, like poly methyl

methacrlyate for around 1 min. Place the developed board under running water to

wash away developer

5. Etching the PCB

Heat up sodium persulphate to 40-50°C and place the photo developed board into

the solution. Then just wait for 20-30 min until the visible copper is all dissolved.

See Figure A-1 for etched PCB.

Figure A-1 Just etched PCB

6. Final step in making the PCB is to apply solder mask. For most DIY cases this would

be optional. However, due to active use of SMD components in GD system design

solder mask is a necessity, it makes soldering much easier. For solder mask

Dynamask was used. Basically clean once again the etched PCB with acetone and

place the mask on top of the PCB. Then put it through laminator so the mask

adheres to the board. Place pads on top of it, and expose in UV oven for 1:30 min.

leave it for 1h in a dark place. Remove the second layer and place it in

photonegative developer. After the pads are clean from solder mask, place the PCB

Page | 49

back in UV oven for 30 min. Finally place it in oven heated to 65°C to dry it off. See

Figure A-2 for PCB board with solder mask applied.

Figure A-2 PCB circuit with solder mask applied

7. Final step is just soldering.

IF any of the steps are unclear, internet is full of instruction on how to manufacture PCB in

home environment. They may differ, because the technique which worked best was

developed over course of 2 month.

4.1.7.2 Final circuit and PCB design

As mentioned in introduction the GD system was developed to be expandable and provides

another engineer with additional GPIO pins. See figure and figure for fully assembled PCB.

See Appendix C for full circuit diagram and PCB.

Figure A-1 fully assembled GD system board top side

Bluetooth
GPIO

Power 6-12 V.

On the left “-“ GND

3.3V

5V -5V

OBJECT

Bluetooth

RX/TX

Page | 50

Figure A-2 fully assembled bottom side, note the black wires, which are fixes for incorrect circuit diagram.

4.1.8 Conclusion

The hardware was probably the most complicated part of the project if the complexity is

measured the time and effort put into it. Nonetheless it was valuable experience and skills

which were learned over the course of developing such device will be useful throughout life.

Especially, manufacturing PCBs at home. It might not be the cheapest method of

manufacturing PCBs, but for sure the fastest. Please see appendix D for bill of materials.

4.2 Software
Final part of the GD system was to design user interface which can interface with the GD

hardware and do pattern recognition. In the beginning it was intended to write an

application for Android smart phone and PC. As mentioned in introduction only PC

application was finished in time, due to unforeseen difficulties making the hardware.

4.2.1 Qt library

The application itself is written almost purely using Qt 5.2 library and C++. Qt is a massive

cross-platform graphical framework designed to run on all devices and architectures. It

supports Windows, Linux, Mac Android. Can be compiled for architectures as ARM, x86, x64

etc. Also it is LGPL licenses, which allows the usage of the library for free for commercial

purposes, providing library isn’t statically linked to the application. Basically, it was just

matter of porting the PC application for Android, however you must write some Os and

device specific code.

All Qt native classes start with letter “Q”. If the class has extended Q_OBJECT, it will most

likely have signals. Signals are used in Qt as communication between classes. They can be

viewed as events. A class which is parent of the particular class which sends the signal can

connect to it and execute code like any other language would do for an event.

555 timer based

voltage inverter

Envelope

detector

Amplification and

offset stage

Page | 51

However, even though originally Qt library was designed only for GUI, over the decades it

has grown to support many hardware functions, which are independent from the OS. Like

Serial port, or Bluetooth, keyboard events etc. Obviously GD system extensively utilizes the

QSerialPort class.

One more important thing to know about Qt to be able to understand the code is that,

graphic forms are stored in UI files, which are basically auto generated code. Those UI files

are loaded at the constructor in each of the corresponding classes. To change the graphical

layout, it has to be done through Qt Creator to keep the consistency of the code. However,

even if fixes are made by hand, providing no one opens it in Qt Creator, the changes will

persist. More details about the structure of the actual application will be described later in

the report.

4.2.2 Support Vector Machines (SVM)

4.2.2.1 Theory

Support vector machines (SVM) in machine learning are known as supervised learning

algorithm that analyzes data and recognizes patterns. Mainly used for classification and

regression. Basically by giving labeled data to the SVM learning algorithm, it will build a

model that assigns the new examples in either one of the provided categories. SVM normally

is represented as points in multi-dimensional space, and a straight line (in multiple-

dimensions) are generated in a way so the provided learning data is separated as far as

possible. Due to high dimensionality, it is very hard to imagine or debug an SVM. But for

illustration purposes we can visualize 2D SVM, see figure 2.

Figure A-1 SVM hyperplane example
Source: http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/svm.html

As you can see in the Figure A-1, SVM has found the “most” optimal solution for classifying

between two classes, in our case red and blue dots.

Page | 52

There are multiple techniques how to do multi-class classification. The one most commonly

used is called One-Vs-All method. Were basically, for N amount of classes there would be N

amount of boundary lines. In other words, each class will be tested separately against all the

other classes as a whole. You can see in Figure A-2 and Figure A-3, how each class is checked

against other classes, hence one-vs-all.

Essentially, with one-vs-all method, we can construct very complicated boundary lines. For

example the summation of the previous cluster example would produce a boundary line

something like in Figure A-4

Figure A-4 constructing one boundary line by “summing” all individual one-vs-all SVM boundary lines

As mentioned before, normally SVM classification is done in multiple dimensions.

Completely normal would be to have even over 160 dimensions for classifications. Due to

human limitations it is impossible to perceive it, that’s why for illustrations purposes only 2

dimensions were described and illustrated. For example, GD system measures amplitude of

the electrode in at least 160 frequencies, which means, that there will be at least 160

dimensions.

Also in the simplified example, only linearly separable examples were shown (except for

Figure A-1), in real life there might be small amount of data overlapping, making clusters of

data inseparable. That’s why cost margin parameter (C) is used as control for the trade-off

Figure A-2 Cluster A checked against cluster
BC

Figure A-3 Every cluster has a corresponding
boundary line with all the other clusters.

Page | 53

between achieving low error on the training data. Large C values will “choose” small margins

in hyperplane and small C values will do the exact opposite will make the SVM to look for

larger margins. The C has to be chosen very carefully to avoid over fitting the data, which

can lead to unreliable pattern recognition. Another important parameter to take into

account is the kernel used for SVM classification, in the examples above linear kernel was

assumed to be used. However, for more complicated data polynomial kernel would enable a

more flexible decision boundary. The library, GD system is using will tend to use radial basis

function kernel (RBF), which is essentially nonlinear kernel, where gamma can control the

fitting of the decision boundary. The higher the gamma the more chance of over fitting the

data, just like for small C.

The art of SVM is to carefully choose those two parameters, so the data is not over fitted

and the decision boundary has the maximum distance between all data points.

4.2.2.2 LibSVM

Since implementing SVM from scratch is a project on its own, GD system is using library

called LibSVM. LibSVM library is written in pure C programming language, which gives the

ability to be used in micro-controllers as well, providing enough memory is available.

LibSVM main features are:

 Different SVM formulations

 Efficient multi-class classification

 Cross validation for model selection

 Probability estimates

 Various kernels (including precomputed kernel matrix)

 Weighted SVM for unbalanced data

 Both C++ and Java sources

 GUI demonstrating SVM classification and regression

 Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell, OCaml,

LabVIEW, and PHP interfaces. C# .NET code and CUDA extension is available.

 It's also included in some data mining environments: RapidMiner, PCP, and

LIONsolver.

 Automatic model selection which can generate contour of cross valiation accuracy.

Source: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

The library itself comes with all the tools necessary for “teaching” the computer to recognize

different touches. From programmer’s perspective, learning data has to be gathered and

saved in specific way. Also the learned model has to be loaded in smv_model structure

before classification.

First of all, the structure of gathered data is as following

[id number] [data current position in case of GD]:[actual value] [data current position in case

of GD]:[actual value] [data current position in case of GD]:[actual value] …

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Page | 54

Below you can see actual data stored in one of the SVM files gathered by GD system:

0 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

0 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

0 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

0 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

1 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

1 1:2.56434 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

1 1:2.55808 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

1 1:2.56121 2:2.56434 3:2.56434 4:2.56434 5:2.56434 6:2.56434

As you can see the data consists of two gestures (ids 1 and 0) and each gesture contains 6

data points.

This data could be put through SVM learning algorithm to produce the model file. For that

GD system is using a tool provided by the library, which is written in python. However, the

user doesn’t need to interact with the tool directly, because the python script is integrated

in the application.

As mentioned earlier, the LibSVM expects from the programmer to load the model in its

model structure. They do provide C code for constructing the model structure; GD

application loads the file into memory and forwards the buffer to that part of the library. As

you can see in the code below:

 QDir dir;

 //qDebug() << dir.absoluteFilePath("gesture.svm.model");

 char buffer[1024];

 strcpy(buffer, fileName.toStdString().c_str());

 if((model=svm_load_model(buffer))==0)

 {

 QMessageBox::critical(this, tr("Error"),

 tr("Can't open model file."));

 exit(1);

 }

Model is the variable is the svm_model structure mentioned before.

The C value and gamma will be chosen by library automatically. However, those values can

be provided manually in the library, but for the sake of simplicity, it was decided to trust the

library for automatically calculating them. When the python script finishes the learning

process, it will plot a graph for C vs gamma which were tested in the process this data can be

used to analyze the accuracy of learned model. See Figure A-1 and Figure A-2.

Page | 55

Figure A-1 Tested C vs gamma values. You can see that best C and gamma values produce 100% accuracy

Figure A-2 Another plot C vs gamma, however, the best solution found was only 99.75% accurate. SO the data
couldn’t be fully fitted with the given maximum amount of iterations

Page | 56

After the model is loaded, by providing new data, which hasn’t been taught, it should return

the ID of the learned data closest to the new set of data. Also it is possible to invoke method

which will return the confidence level of the classified set of data.

However before classifying the new set of data, they have to be properly stored in svm_node

structure and most importantly normalized between values -1 to 1. The normalization values

(min and max for each X value) are given after learning has been finished in file ending

*.svm.scale.

After the all the necessary computation has been done on the new set of data, and then

they can be passed to the LibSVM for classification, by using one of the functions below:

svm_predict_values(model, new_set_of_data, decVals);

svm_predict_probability(model, new_set_of_data, decVals);

The first function will return the ID of the closest cluster of data learned before. And the

second function will basically return the probability of the classified data reassembling the

closest data cluster. It can be viewed as a measure of confidence that the data were

classified correctly, especially useful for assessing the performance of the system.

That mainly covers how LibSVM works and how it has been implemented in GD systems

application. The GD application does create one more additional file with the same pattern:

*.svm.names. The names for the corresponding gesture are stored in this file. They are

directly linked with the ID number. The first name in the file will correspond to data cluster

with ID of 0, and so on.

4.2.3 Main application

The main PC application consists of 5 main classes which are not 3rd party libraries but

written explicitly for GD system:

1. MainWindow

2. Learner

3. SerialTerminal

4. Settings

5. SimulateKeyboard

4.2.3.1 MainWindow class

Just like in any Qt application everything begins at MainWindow, which is the first class

constructed in the main.cpp file and executed. Afterwards MainWindow links to all the other

classes necessary for the application – Settings, Learner, SerialTerminal, QSerialPort and

SimulateKeyboard. The variables containing the pointer to instances for the classes listed

before are stored as global variables in the MainWindow class. Also all the instances are

created in MainWindow’s constructor and signals connected to corresponding slots.

All pattern recognition is done inside the MainWindow class. Two methods are responsible

for pattern recognition – doSomeMagic() and enableMagic().

Page | 57

enableMagic() will open a file browser dialog, which will only show *.model files. Basically,

this method is responsible for loading the SVM model into the memory. There is nothing

particularly special about the process itself, but in short it does the following functions:

1. Loads SVM model

2. Loads SVM range file for later data scaling

3. Loads SVM name file for id to gesture name mapping

However, doSomeMagic() method is responsible for actually classifying the new set of data

and printing the output, that is the name of the recognized gesture. Also if

SimulateKeyboard dialog is open, it will forward the gesture’s ID which in turn will emulate a

key press on the keyboard. Also this is the method, which will perform scaling of the new

data from -1 to 1 and will forward it to the LibSVM function for prediction. This method is

executed every time sufficient amount of data has been received from the serial port.

The serial communication in Qt is done first by constructing a QSerialPort object and then by

opening user specified port with user specified baud rate. Those two properties are read

from the Settings class. When serial object is created it can be opened by invoking

openSerialPort() method in the MainWindow class. When a successful connection will be

established with the GD hardware, first it will send reset command “q”, wait for 150ms and

send the new frequency sweep settings, which are specified by the user in Settings class. The

settings are sent by sending “c” command to xmega. Exactly this is done by

sendDeviceSettings() method in MainWindow class. Which utilizes the sendSerialData()

method. That method just puts the data necessary for transmission on a buffer, which will

be taken care of by QSerialPort class device write event.

Once successful connection is opened with GD hardware, an event, more precisely a signal

will be listening to whether any data are available in the serial port’s buffer. If so it will

invoke readMethod(). This method will read all buffer, and extract data between two curly

brackets “{ … … … }”. When the user specified amount of data is collected, the function will

construct a vector of amplitude in V corresponding to the frequency. The voltage will be

calculated at this stage, rather on the micro-controller. After vector of amplitudes vs

frequency has been constructed it will be forwarded to plotting function. However, if

Learner class has initiated data gathering, it will also store the vector into the file,

corresponding the structure of SVM file described earlier. Finally, if a SVM model is loaded, it

will forward the vector for classification, where it will be scaled and converted accordingly.

When all of the above has been executed, the same method will measure how quick the

data was collected.

The final method worth mentioning is the plot() method. For plotting GD application is usin a

free Qt library called QCustomPlot. It is a very basic plotting library with very limited

functionality, there are better alternatives. But a better more functional library comes with

the cost of complexity. In any case, the plotting library just needs to vectors to be forwarded

– one for X axis and one for Y axis. The X vector in GD system corresponds to the frequency

in kHz and Y vector to the amplitude in V. Also GD system provides some basic configuration,

like recalculating the range of X and Y axis, so it doesn’t change every time different scale of

data is received. In other words, the range for X axis is fixed to the amount of frequencies

Page | 58

swept and Y axis to 5 V. When all properties are set and data forwarded to the plotting

library, then you just need to invoke replot() method in the QCustomPlot class. Note,

QCustomPlot library won’t be described in more detailed than actually used, for more

information refer to original author’s homepage.

Figure A-1 Main application window, with plotting and recognized gesture in red font

Figure A-2 Another gesture recognized by the system

Connect and

disconnect

Serial

terminal
Properties

Learner

Load SVM

model

Transm

-ission

speed

Recognized

gesture

Plotted received

data. Amplitude

vs frequency

Debugging

console

Page | 59

4.2.3.2 Learner class

This class is responsible for sending signal to the MainWindow class that user has initiated

the data gathering process while specifying ID and name of the gesture. And also Learner

class is responsible for executing the python script necessary for constructing the SVM

model file.

When user presses button “Collect” startGathering() method will be invoked. Which will

check whether a file for saving the gathered data is specified and then it will emit a custom

signal gatherData() which will be received by MainWindow. The signal will also hold the

value of the how many data needs to be gathered, the ID of the gesture and the name of the

gesture.

When user presses the “Learn” button learn() method will be invoked. Which will first read

from the Settings where python executable is located on the computer (must be provided in

Settings class). Afterwards it will construct a QProcess to run the python script for learning

on a separate thread, while listening when any data is returned from the process or it has

finished executing. When execution is finished it will also check its exit code, if it’s bigger

than 0, a message box will appear showing the error! See the Figure A-1 for this class GUI.

Figure A-1 Learner class dialog

4.2.3.3 Settings class

Settings class is responsible for writing configuration into windows user registry. More

specifically the settings will be stored in following location:

“HKEY_CURRENT_USER\\Software\\Rastro\\Kulaks”

Also that location will have sub folder of “Serial” and “Dev”. “Serial” will hold registry entries

for port the GD device is connected to and baudrate. The “Dev” folder will hold information

about the initial frequency the maximum frequency and amount of samples necessary to be

measured. These settings will be sent to the GD device when the application first connects

to it. In the main folder, there will be entry for “python” and “gnuplot” which are basically

path to those two executables. See Figure A-1, for the Settings dialog.

Page | 60

Figure A-1 Settings dialog

Every time the dialog will be opened it will load the settings from the registry. Also since

settings are stored in user profile, multiple users can have different settings set up for GD

system. When “OK” button is pressed, the main application will send the new device settings

to the GD hardware and restart the frequency sweep sequence.

4.2.3.4 SerialTerminal class

SerialTerminal class is basically a fully functional serial terminal, hence the name. Through

this dialog it is possible to interact with the GD hardware manually, without the need for

connecting to it with a different application like putty. The class itself is listening to key

release event, if such event is detected it will send the character to the GD hardware. To

write to the terminal window method writeToTerminal(QString text) must be invoked. This is

done so by MainWindow class, if this dialog is visible, otherwise MainWindow won’t send

any data to this class. See Figure A-1 for a terminal dialog screenshot.

Page | 61

Figure A-1 Terminal dialog testing, with an actual GD hardware connected to it

4.2.3.5 SimulateKeyboard class

The final custom written class is for simulating key presses. This is the only class which

cannot be cross compiled between and is only supported by Microsoft Windows. It does use

3 more classes, which have extended the basic functionality of the standard Qt classes.

1. CustomTreeWidget class

a. This class just overrides the key events processed by QTreeWidget and

nothing else. Basically makes sure that the key events are not consumed by

tree widget

2. KeyBinder class

a. This class is an extension of QLabel class where it reads the key release

event and assigns to itself the key code. This class is no longer used, in the

final version a more sophisticated method was used for mapping keys.

3. KeyDelegate class

a. This is the class which succeeded the KeyBinder class; basically,

QTreeWIdget has the ability to automatically construct custom delegate for

setting properties. So a delegate class was created for “listening” key release

events and mapping them accordingly.

For simulating the key press, GD application is using windows library, where it provides a

method SendInput(). The method itself as an argument requires INPUT structure. This can

basically be mouse or a keyboard. In the case of this project only keyboard was simulated.

The code is rather self explanatory:

Page | 62

 INPUT ip;
 // Set up a generic keyboard event.
 ip.type = INPUT_KEYBOARD;
 ip.ki.wScan = 0; // hardware scan code for key
 ip.ki.time = 0;
 ip.ki.dwExtraInfo = 0;

 // Press the "A" key
 ip.ki.wVk = ui->keyMap->topLevelItem(g)->text(1).toInt(); // virtual-key code from

settings
 ip.ki.dwFlags = 0; // 0 for key press
 SendInput(1, &ip, sizeof(INPUT));

 // Release the key
 ip.ki.dwFlags = KEYEVENTF_KEYUP; // KEYEVENTF_KEYUP for key release
 SendInput(1, &ip, sizeof(INPUT));

Figure A-1 Keyboard simulator configuration dialog, if this dialog is open while SVM is performing pattern
recognition it will notify this class

If SVM is performing pattern recognition, the MainWindow class will invoke gesture(…)

method. This method will check which key need to be emulated with the received gesture

and perform such action.

For the full application code see Appendix E. Note to be able to run the Qt application,

atleast Qt 5.2 redistributables must be installed on the system.

5 Testing
While testing the system, it was realized that the results should be more reliable more time

is necessary, and further testing is necessary in the future. However the first results suggest

that different environments produce different readings from the sensor. Even by unplugging

the power supply from laptop will produce completely different frequency responses. See

Figure A-1 and Figure A-2

Page | 63

Figure A-1 Idle readings while laptop's power supply is plugged in

Figure A-2 Idle reading when laptop runs only on battery. The signal immediately becomes slightly altered.

Also due to previous experience with making sensors it was tested whether mobile phone

making a call will result in introducing noise in the system. The result was that mobile phone

call doesn’t have any impact on the sensor.

Page | 64

To measure the speed of the whole system every second number of conversions were

collected over the course of 162 seconds, which in turn produced 162 data points. See

Figure A-3

Figure A-3 Conversions a second over a course of 162 seconds

On average the GD system is able to perform 8.35 conversions a second. This is rather quick

considering 160 data points are sent to the PC on every conversion.

More precisely, 160*6+159+2 = 1121 bytes are sent on every reading at the worst case

scenario. 160 data points are in floating format %0.2f. In worst case scenario it will be 3 digit

number with two decimal points. + white spaces after each number except for the last digit

159 and finally we add 2 curly brackets.

The average was taken while SVM was performing pattern recognition, conclusion, it has

little or no impact at all on the GD systems performance. The average ended up being 8.35

over a course of 197 seconds.

6 Conclusion
The GD system developed over the course of year was successfully able to increase the

amount of gestures detected by human interaction with conductive materials. Normally,

capacitive sensors can only detect whether an object is touched or not. GD system allows

more complicated gestures to be detected by basically measuring the amount of skin

touching it. From this information the sensor is able to distinguish whether one or two

fingers are placed on the sensor, or if a hand is close to it.

In addition, the GD system hardware is easily expandable providing a workable platform for

further improvements due to easy access for all power lines, fast micro-controller and 8

GPIO pins. The software and firmware is written by using OOP convention, which should

make the code easier to read for another engineer. And more boards can be manufactured

in home environment.

0

2

4

6

8

10

12

1

8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

Conversions

Page | 65

However, the GD system hasn’t reached its full potential, especially regarding the sensitivity

of the sensor. One hypothesis would be, if the current could be increased for the excitation

AC signal, it may render the sensor to be more sensitive, because it would have more energy

to propagate through internal body fluids. Probably amplitude of the signal could be

increased as well to produce the same effect. Testing this hypothesis would be the next

logical step to make.

Also further system testing is needed to obtain more reliable data, as mentioned earlier.

Especially important would be to test the performance of the system with multiple people.

With this test system’s accuracy could be measured,

Overall, it was quite useful experience when working on this project. It allowed to further

strengthen knowledge regarding machine learning and application developments. Also PCB

designing, manufacturing and soldering are skills which will be useful skills for further work

in this field. An important lesson learned, is that one thing is to construct a prototype on a

bread board and completely another thing is to finalize and make a bug free device. The

same principle applies for developing application. It is very important not to underestimate

the complexity of the project and also be prepared for many failures until the device can be

made working.

Page | 66

Appendices

Page | 67

A. Appendix

Figure A-1 Circuit diagram for the xmega16e5 breakout board

Page | 68

Figure A-2 PCB design of the xmega16e5 breakout board

Figure A-3 Manufactured breakout board

Page | 69

B. Appendix

Kulaks_firmware.cpp file
/*
 * Kulaks_firmware.cpp
 *
 * Created: 2014.04.14. 18:19:53
 * Author: Raivis
 */

#define F_CPU 32000000UL

#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include <stdlib.h>
#include "SerialC.h"
#include "AD9850.h"

//For function generator
#define W_CLK 0
#define FQ_UD 1
#define DATA 2
#define RESET 3

//For sweeping DEFAULT VALUES, kulaks pc software can change it
#define N 160 //How many frequencies

#define MIN_FREQ 25000
#define MAX_FREQ 310000
#define SWEEP_STEP (MAX_FREQ-MIN_FREQ)/N

extern "C"{
 FILE * uart_str;
}

//Global variables
SerialC serial;
AD9850 funcGenerator(W_CLK, FQ_UD, DATA, RESET);

uint32_t singleStep;
uint32_t maxFreq;
uint32_t initialFreq;
uint32_t frequency = 1000;
uint16_t res = N;

float *results; //-Filtered result buffer
float *freq; //-Filtered result buffer

bool sweep;

//Prototype functions
void setUp32MhzInternalOsc();
static int uart_putchar (char c, FILE *stream);
int uart_getchar(FILE *stream);
void setUpSweep(uint32_t min, uint32_t max, uint16_t nRes);
void doSweep();
void setUpADC();
int readADC();

int main(void)
{
 setUp32MhzInternalOsc();

 //Overwrite standard stdout;
 uart_str = fdevopen(uart_putchar, uart_getchar); //send , receive functions
 stdout = stdin = uart_str;

Page | 70

 //Setup Function Generator
 PORTC_DIR |= ((1<<W_CLK) | (1<<FQ_UD) | (1<<DATA) | (1<<RESET)); //Set the direction
for function generator pins
 //PORTC_DIR = 0xff;
 //PORTC_DIR |= ((1<<4) | (1<<5));

 //printf("PORTA_DIR: %d\n", PORTA_DIR);
 funcGenerator.init();
 funcGenerator.doReset();

 funcGenerator.osc(2000,0);

 setUpSweep(MIN_FREQ, MAX_FREQ, N);

 //Setup ADC
 PORTA_OUT = 0x00;
 setUpADC();

 sweep = false;

 printf("Ready!\n");

 // PORTC_OUTSET = PIN4_bm;
 while(1)
 {
 //funcGenerator.osc(2000,0);
 //_delay_ms(200);
 //PORTC_OUT = ~PORTC_OUT;
 //_delay_ms(200);
 if(serial.available())
 {
 char inChar = serial.usart_receiveByte();
 if (inChar == 't')
 {
 char str [80];
 int i;
 printf ("Enter your family name: ");
 scanf ("%79s",str);
 printf ("Enter your age: ");
 scanf ("%d",&i);
 printf ("Mr. %s , %d years old.\n",str,i);
 printf ("Enter a hexadecimal number: ");
 scanf ("%x",&i);
 printf ("You have entered %#x (%d).\n",i,i);
 }
 else if(inChar == 'n')
 {
 frequency += (float)singleStep*XTAL_MHZ/FREQ_FACTOR;
 funcGenerator.osc(frequency, 0);
 printf("Frequency: %0.2f kHz\n", frequency/1000.0);
 }
 else if(inChar == 'b')
 {
 frequency -= (float)singleStep*XTAL_MHZ/FREQ_FACTOR;
 funcGenerator.osc(frequency, 0);
 printf("Frequency: %0.2f kHz\n", frequency/1000.0);
 }
 else if(inChar == 'r')
 {
 frequency = (float)initialFreq*XTAL_MHZ/FREQ_FACTOR;
 funcGenerator.osc(frequency, 0);
 printf("Frequency: %0.2f kHz\n", frequency/1000.0);
 }
 else if(inChar == 'c')
 {
 printf("New sweep [min,max,n]:");
 uint32_t min;
 uint32_t max;
 uint16_t _n;

 char line[100];
 uint16_t i = 0;

Page | 71

 //if(fgets(line,100,stdin) && sscanf(line,"%lu %lu %u",
&min, &max, &_n)!=1)
 //{
 //min = 0;
 //max = 0;
 //_n = 0;
 //}
 scanf(" %lu %lu %u", &min, &max, &_n);
 //scanf(" %lu",&min);

 printf("Received %lu %lu %u\n", min,max,_n);
 //printf("Received %s %d\n", line, i);
 setUpSweep(min, max, _n);
 }
 else if(inChar == 's') //Stop
 {
 sweep = false;
 }
 else if(inChar == 'd') //Do sweep
 {
 sweep = true;
 }
 else if(inChar == 'q')
 {
 //RESETS the whole AVR
 CCP = CCP_IOREG_gc; //Trigger protection mechanism
 RST_CTRL = RST_SWRST_bm;
 }
 }

 if(sweep == true)
 doSweep();

 }
}

void doSweep()
{
 uint16_t d;
 frequency = initialFreq;
 funcGenerator.oscInt(frequency);

 serial.sendChar('{');

 for(d = 0; d<res; d++)
 {
 uint16_t v = readADC();
 frequency = frequency + singleStep;
 funcGenerator.oscInt(frequency);

 results[d] = results[d]*0.5+(float)(v)*0.5; //filter results

 printf("%0.2f ", results[d]);
 }

 serial.sendChar('}');
 serial.sendChar('\n');
}

void setUpADC()
{
 ADCA_CH0_CTRL = ADC_CH_INPUTMODE_SINGLEENDED_gc; //Configure ADC conversion as single
ended
 ADCA_CH0_MUXCTRL = ADC_CH_MUXPOS_PIN1_gc; // Set ADC to pin1, or PA1, because PA0 =
AREFA

 //Sample rate = 166666 samples.
 // 1000000/(0.5*(12+0)+0) = 166666
 // See page 351

Page | 72

 ADCA_CTRLB = ADC_CURRLIMIT_LOW_gc | ADC_RESOLUTION_12BIT_gc; //Low current limit, up
to 225ksps, and 12 bit resolution
 //ADCA_CTRLB = ADC_FREERUN_bm;
 //ADCA_REFCTRL = ADC_REFSEL_INTVCC_gc; // Internal reference VCC/1.6
 ADCA_REFCTRL = ADC_REFSEL_AREFA_gc; // External reference AVCC - 0.6
 ADCA_PRESCALER = ADC_PRESCALER_DIV32_gc; // Prescaler div 4

 ADCA_CTRLA = ADC_ENABLE_bm; //Enable ADC

}

int readADC()
{
 ADCA_CTRLA |= ADC_START_bm;
 //ADCA_INTFLAGS = 0x01;
 while(!(ADCA_CH0_INTFLAGS & ADC_CH0IF_bm));
 return ADCA_CH0_RES;
}

void setUpSweep(uint32_t min, uint32_t max, uint16_t nRes)
{
 res = nRes;

 maxFreq = (uint32_t)max*FREQ_FACTOR/XTAL_MHZ;
 initialFreq = (uint32_t)min*FREQ_FACTOR/XTAL_MHZ;
 singleStep = (maxFreq-initialFreq) / res;

 printf ("REs %d %d", res, nRes);

 free(results);
 results = (float*) malloc(res+1);
 free(freq);
 freq = (float*) malloc(res+1);

 printf("\nSweep initialized:\nMin: %0.2f kHz\nMax: %0.2f kHz\nStep:%0.2f
kHz\n\n",min/1000.0,max/1000.0,((max-min)/res)/1000.0);
}

void setUp32MhzInternalOsc()
{
 OSC_CTRL |= OSC_RC32MEN_bm; //Setup 32Mhz crystal

 while(!(OSC_STATUS & OSC_RC32MRDY_bm));

 CCP = CCP_IOREG_gc; //Trigger protection mechanism
 CLK_CTRL = CLK_SCLKSEL_RC32M_gc; //Enable internal 32Mhz crystal

}

static int uart_putchar (char c, FILE *stream)
{
 if (c == '\n')
 uart_putchar('\r', stream);

 serial.sendChar(c);

 return 0;
}

int uart_getchar(FILE *stream)
{
 while(!serial.available()); //Interesting DRIF didn't work.
 char data = serial.read();
 if(data == '\r')
 data = '\n';
 uart_putchar(data, stream);
 return data;
}

Page | 73

SerialC.h cpp file
#ifndef SERIALC_H
#define SERIALC_H

class SerialC
{
 public:
 SerialC(void);
 void setUpSerial();
 void sendChar(char c);
 void sendString(char *text);
 char usart_receiveByte();

 uint8_t available();
 char read();

};

#endif //SERIALC_H

SerialC.cpp file
#ifndef F_CPU
#define F_CPU 32000000UL // Orangutans run at 20 MHz
#endif //!F_CPU

#include <avr/io.h>
#include <stdio.h>
#include "SerialC.h"

SerialC::SerialC(void)
{
 setUpSerial();
}

void SerialC::setUpSerial()
{
 //For the sake of example, I'll just REMAP the USART pins from PC3 and PC2 to PC7 and
PC6
 PORTC_REMAP |= 0x16; //See page 152 in datasheet, remaps the USART0

 PORTC_OUTSET = PIN7_bm; //Let's make PC7 as TX
 PORTC_DIRSET = PIN7_bm; //TX pin as output

 PORTC_OUTCLR = PIN6_bm;
 PORTC_DIRCLR = PIN6_bm; //PC6 as RX

 // Baud rate selection
 // BSEL = (32000000 / (2^0 * 8*115200) -1 = 34.7222 -> BSCALE = 0
 // FBAUD = ((32000000)/(2^0*8(34+1)) = 114285.71 -> it's alright

 USARTC0_BAUDCTRLB = 0; //Just to be sure that BSCALE is 0
 USARTC0_BAUDCTRLA = 0x22; // 207

 //Disable interrupts
 USARTC0_CTRLA = 0;
 //8 data bits, no parity and 1 stop bit
 //USARTC0_CTRLC = USART_CMODE0_bm | USART_PMODE0_bm | USART_CHSIZE_8BIT_gc;
 USARTC0_CTRLC = USART_CHSIZE_8BIT_gc;

 //Enable receive and transmit
 USARTC0_CTRLB = USART_TXEN_bm | USART_CLK2X_bm | USART_RXEN_bm; // And enable high
speed mode

}

void SerialC::sendChar(char c)

Page | 74

{

 while(!(USARTC0_STATUS & USART_DREIF_bm)); //Wait until DATA buffer is empty

 USARTC0_DATA = c;

}

void SerialC::sendString(char *text)
{
 while(*text)
 {
 sendChar(*text++);
 }
}

char SerialC::usart_receiveByte()
{
 while(!(USARTC0_STATUS & USART_RXCIF_bm)); //Interesting DRIF didn't work.
 return USARTC0_DATA;
}

uint8_t SerialC::available()
{

 return (USARTC0_STATUS & USART_RXCIF_bm);
}

char SerialC::read()
{
 return USARTC0_DATA;
}

Page | 75

AD9850.h file
#ifndef AD9850_H
#define AD9850_H

 //Frequency of your crystal oscillator (CLKIN input pin 9 in datasheet), measured in MHz.
 // This reference frequency must be higher than 1MHz.
 #define XTAL_MHZ 125

 //Relationship value between actual frequency and 32-bit word sent in the serial streaming
 #define FREQ_FACTOR 4294.967295

 #define HIGH 10
 #define LOW 0

 #define _PORT_N PORTC_OUT

class AD9850
{
 public:
 AD9850(uint8_t W_CLK, uint8_t FQ_UD, uint8_t DATA, uint8_t RESET);
 void init();
 void doReset();
 void osc(double frequency, double phase);
 void oscInt(unsigned long y);

 private:
 uint8_t _W_CLK;
 uint8_t _FQ_UD;
 uint8_t _DATA;
 uint8_t _RESET;

 void digitalWrite(uint8_t pin, uint8_t state);

};

#endif //AD9850_H

AD9850.cpp file

#ifndef F_CPU
#define F_CPU 32000000UL // Orangutans run at 20 MHz
#endif //!F_CPU

#include <avr/io.h>
#include "AD9850.h"

AD9850::AD9850(uint8_t W_CLK, uint8_t FQ_UD, uint8_t DATA, uint8_t RESET)
{
 this->_W_CLK = W_CLK;
 this->_FQ_UD = FQ_UD;
 this->_DATA = DATA;
 this->_RESET = RESET;
}

void AD9850::init()
{
 digitalWrite(_W_CLK, LOW);
 digitalWrite(_FQ_UD, LOW);
 digitalWrite(_DATA, LOW);
 digitalWrite(_RESET, LOW);
}

void AD9850::doReset()
{
 digitalWrite(_RESET, LOW);
 digitalWrite(_RESET, HIGH);
 digitalWrite(_RESET, LOW);

Page | 76

 digitalWrite(_W_CLK, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);

 digitalWrite(_FQ_UD, LOW);
 digitalWrite(_FQ_UD, HIGH);
 digitalWrite(_FQ_UD, LOW);

 osc(0,0);

 //digitalWrite(4, LOW);
}

void AD9850::osc(double frequency, double phase)
{
 long y=(long)frequency*FREQ_FACTOR/XTAL_MHZ;
 while(phase>360)
 phase-=360;
 long z=phase/11.5;

 // Serial.println("Frequency word:");
 // Serial.println(y);

 int i;

 //Frequency 32-bit word
 for (i=0;i<32;i++){
 digitalWrite(_DATA, (y>>i) & 0x01);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 }

 //control bit #1, control bit #2 and Power off, all to low
 digitalWrite(_DATA, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);

 //phase 5-bit word
 for (i=0;i<5;i++){
 digitalWrite(_DATA, (z>>i) & 0x01);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 }

 digitalWrite(_FQ_UD, HIGH);
 digitalWrite(_FQ_UD, LOW);

 //digitalWrite(4, HIGH);

}

void AD9850::oscInt(unsigned long y)
{

 long z = 0;

 int i;

 //Frequency 32-bit word
 for (i=0;i<32;i++){
 digitalWrite(_DATA, (y>>i) & 0x01);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 }

 //control bit #1, control bit #2 and Power off, all to low
 digitalWrite(_DATA, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);

Page | 77

 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);

 //phase 5-bit word
 for (i=0;i<5;i++){
 digitalWrite(_DATA, (z>>i) & 0x01);
 digitalWrite(_W_CLK, HIGH);
 digitalWrite(_W_CLK, LOW);
 }

 digitalWrite(_FQ_UD, HIGH);
 digitalWrite(_FQ_UD, LOW);

 //digitalWrite(5, HIGH);

}

void AD9850::digitalWrite(uint8_t pin, uint8_t state)
{
 if(state > 0)
 _PORT_N |= (1<<pin);
 else
 _PORT_N &=~(1<<pin);
}

Page | 78

C. Appendix

Page | 79

Page | 80

PCB design

Figure C-1 Bottom part of PCB

Figure C-2 Top of the PCB

Page | 81

D. Appendix

Bill of material

Part Value Device Package

-5V PINHD-1X2 1X02

3V3 PINHD-1X3 1X03

5V PINHD-1X3 1X03

6-12VINPUT 1X2-3.5MM 1X2-3.5MM 1X2-3.5MM

AD9850 AD985._DEV_BOARD AD985._DEV_BOARD PINS2X10

C1 100n C-EUC0603 C0603

C2 22uF CPOL-EUE2.5-5 E2,5-5

C3 100uF CPOL-EUE2.5-5 E2,5-5

C4 100n C-EUC0603 C0603

C5 22n C-EUC0603 C0603

C6 100n C-EUC0603 C0603

C6* 1uF CPOL-EUE2.5-5 E2,5-5

C7 1uF CPOL-EUE2.5-5 E2,5-5

C8 330n C-EUC0603 C0603

C9 100n C-EUC0603 C0603

C10 100n C-EUC0603 C0603

C11 100n C-EUC0603 C0603

C12 1uF C-EUC0603 C0603

C13 1uF C-EUC0603 C0603

C14 100n C-EUC0603 C0603

C15 1uF C-EUC0603 C0603

D1 1n4148 DIODE-MICROMELF-
R

MICROMELF-R

D2 1n4148 DIODE-MICROMELF-
R

MICROMELF-R

D3 1n4148 DIODE-MICROMELF-
R

MICROMELF-R

GND PINHD-1X6 1X06

IC1 NE555D NE555D SO08

IC2 LM337TL 337TL

IC3 7805T 7805T TO220H

IC4 MCP1703CB MCP1703CB SOT23

JP1 PINHD-2X3 2X03

JP2 JP2E JP2

L1 10mH L-US0207/12 0207/12

LED1 LEDCHIP-LED0603 CHIP-LED0603

LED2 LEDCHIP-LED0603 CHIP-LED0603

LED3 LEDCHIP-LED0603 CHIP-LED0603

LED4 LEDCHIP-LED0603 CHIP-LED0603

MAIN_SERIAL PINHD-1X4 1X04

OBJECT PINHD-1X2 1X02

PORTD PINHD-1X8 1X08

R1 75 R-EU_R0603 R0603

Page | 82

R2 75 R-EU_R0603 R0603

R3 75 R-EU_R0603 R0603

R4 75 R-EU_R0603 R0603

R5 62k R-EU_R0603 R0603

R6 16k R-EU_R0603 R0603

R7 10K TRIM_EU-CA6V CA6V

R8 22k R-EU_R0603 R0603

R9 12k R-EU_R0603 R0603

R10 33k R-EU_R0603 R0603

R11 4k7 R-EU_R0603 R0603

R12 360 R-EU_R0603 R0603

R13 120 R-EU_R0603 R0603

R14 100 R-EU_R0603 R0603

R15 10k R-EU_R0603 R0603

R16 10k R-EU_R0603 R0603

R17 160 R-EU_R0603 R0603

R18 160 R-EU_R0603 R0603

R19 160 R-EU_R0603 R0603

R20 160 R-EU_R0603 R0603

R21 10k R-EU_R0603 R0603

R22 100 R-EU_R0603 R0603

S1 10-XX B3F-10XX

U$1 E5-VQFN33 E5-VQFN33 TQFP32-08

U$2 10uH INDUCTOR1206H* INDUCTOR-1206

U$3 MCP1525 MCP1525 SOT23

U1 OPA830_D_8 OPA830_D_8 D8

U2 OPA830_D_8 OPA830_D_8 D8

U3 OPA830_D_8 OPA830_D_8 D8

U4 HC_05 HC_05 BLUETOOTH_SMD

Page | 83

E. Appendix

Main.cpp file
#include "mainwindow.h"

#include <QApplication>

int main(int argc, char *argv[])

{

 QApplication a(argc, argv);

 MainWindow w;

 w.show();

 return a.exec();

}

Page | 84

Learner.h file
#ifndef LEARNER_H

#define LEARNER_H

#include <QDialog>

#include <QFileDialog>

#include <QMessageBox>

#include <QProcess>

#include <QSettings>

#include <QDebug>

namespace Ui {

class Learner;

}

class Learner : public QDialog

{

 Q_OBJECT

public:

 explicit Learner(QWidget *parent = 0);

 ~Learner();

signals:

 void gatherData(int amount, int id, QString file, QString name);

private slots:

 void startGathering();

 void openFileDialog();

 void learn();

 void enableButtons(int exitCode);

 void readProcess();

private:

 Ui::Learner *ui;

 QProcess *svmProcess;

};

#endif // LEARNER_H

Page | 85

Learner.cpp file
#include "learner.h"

#include "ui_learner.h"

Learner::Learner(QWidget *parent) :

 QDialog(parent),

 ui(new Ui::Learner)

{

 ui->setupUi(this);

 connect(ui->collectBtn,SIGNAL(clicked()), this, SLOT(startGathering()));

 connect(ui->cancelBtn, SIGNAL(clicked()), this, SLOT(close()));

 connect(ui->browseBtn, SIGNAL(clicked()), this, SLOT(openFileDialog()));

 connect(ui->learnBtn, SIGNAL(clicked()), this, SLOT(learn()));

 svmProcess = new QProcess(this);

 ui->stopBtn->setVisible(false);

 connect(ui->stopBtn, SIGNAL(clicked()), svmProcess, SLOT(kill()));

}

void Learner::openFileDialog()

{

 QString fileName = QFileDialog::getSaveFileName(this,

 tr("Save SVM data"), "",

 tr("SVM data (*.svm);;All Files (*)"));

 if (fileName.isEmpty())

 return;

 else

 {

 //QFile file(fileName);

 ui->fileTxt->setText(fileName);

 }

}

void Learner::startGathering()

{

 if(ui->fileTxt->text().isEmpty())

 {

 QMessageBox::critical(this, tr("File not found"), tr("Please specify a

file"));

 return;

 }

 if(ui->gestureName->text().isEmpty())

 {

 QMessageBox::critical(this, tr("Empty name"), tr("Please specify the name of

gesture"));

 return;

 }

 //Send ignal to MainWIndow class, that I need Data

 emit gatherData(ui->spinTrain->value(), ui->spinId->value(), ui->fileTxt->text(),

ui->gestureName->text());

 this->close();

}

void Learner::learn()

{

 //initiate process to construct svm model file

 QSettings settings("HKEY_CURRENT_USER\\Software\\Rastro\\Kulaks",

 QSettings::NativeFormat);

 connect(svmProcess, SIGNAL(finished(int)), this, SLOT(enableButtons(int)));

 connect(svmProcess, SIGNAL(readyReadStandardOutput()), this, SLOT(readProcess()));

 QStringList arguments;

 QString scriptPath = qApp->applicationDirPath() + "/libsvm/tools/";

 svmProcess->setWorkingDirectory(scriptPath);

 arguments << "easy.py" << ui->fileTxt->text() << ui->fileTxt->text();

 qDebug() << "Arguments: " << arguments;

// qDebug() << "scriptPath";

Page | 86

 svmProcess->start(settings.value("python").toString() , arguments);

 ui->learnBtn->setEnabled(false);

 ui->cancelBtn->setEnabled(false);

 ui->collectBtn->setEnabled(false);

 ui->stopBtn->setVisible(true);

}

void Learner::readProcess()

{

 QByteArray bytes = svmProcess->readAllStandardOutput();

 qDebug() << bytes;

}

void Learner::enableButtons(int exitCode)

{

 ui->learnBtn->setEnabled(true);

 ui->cancelBtn->setEnabled(true);

 ui->collectBtn->setEnabled(true);

 ui->stopBtn->setVisible(false);

 qDebug() << "Process closed with: " << exitCode << svmProcess-

>readAllStandardError();

 if(exitCode > 0)

 QMessageBox::critical(this, "Something went wrong with QProcess", svmProcess-

>readAllStandardError());

}

Learner::~Learner()

{

 delete ui;

}

Page | 87

MainWindow.h file
#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

#include <QSerialPort>

#include <QMessageBox>

#include "qcustomplot.h"

#include "learner.h"

#include <QFile>

#include <QMessageBox>

#include "svm.h"

#include "settings.h"

#include <QSettings>

#include "serialterminal.h"

#include "playground/simulatekeyboard.h"

#include <QTimer>

#include <QThread>

namespace Ui {

class MainWindow;

}

class MainWindow : public QMainWindow

{

 Q_OBJECT

public:

 explicit MainWindow(QWidget *parent = 0);

 void writeToLogger(QString text);

 ~MainWindow();

private slots:

 void readData();

 void sendSerialData(QByteArray data);

 void openSerialPort();

 void closeSerialPort();

 void plot(QVector<double> values);

 void startGathering(int amount, int id, QString file, QString name);

 void openLearnerDialog();

 void doSomeMagic(QVector< double > samp);

 void openSettings();

 void openTerminal();

 void enableMagic(bool enable);

 void openSimulateKeyboard();

 void dataASecond();

 void sendDeviceSettings(int min, int max, int n);

private:

 Ui::MainWindow *ui;

 QSerialPort *serial;

 Learner *learner;

 SerialTerminal * terminal;

 Settings *settings;

 SimulateKeyboard *keyboardPlayground;

 QByteArray allData;

 QVector< QVector<double> > gatheredData;

 int numberOfDataStillNeeded;

 int numberOfDataNeeded;

 QString gestureName;

 QStringList gestureNameList;

 QTimer* dataASecondT;

 int collected;

 QString file;

 int id;

 int numberOfSamples;

 struct svm_model * model;

Page | 88

 double rmin[160];

 double rmax[160];

};

#endif // MAINWINDOW_H

Page | 89

MainWindow.cpp file
#include "mainwindow.h"

#include "ui_mainwindow.h"

#include <errno.h>

//Legacy constants, not used anymore

#define NOSAMPS 160

#define VOLTAGE 0.0048828125

#define FREQUENCY_STEP 1.781

MainWindow::MainWindow(QWidget *parent) :

 QMainWindow(parent),

 ui(new Ui::MainWindow)

{

 ui->setupUi(this);

 settings = new Settings(this);

 connect(settings, SIGNAL(deviceSettings(int,int,int)), this,

SLOT(sendDeviceSettings(int,int,int)));

 serial = new QSerialPort(this); //Construct serial object

 //Connect correspniindg serial object signals to their slots

 connect(serial, SIGNAL(readyRead()), this, SLOT(readData()));

 connect(ui->actionConnect, SIGNAL(triggered()), this, SLOT(openSerialPort()));

 connect(ui->actionDisconnect, SIGNAL(triggered()), this, SLOT(closeSerialPort()));

 connect(ui->actionSettings, SIGNAL(triggered()), this, SLOT(openSettings()));

 learner = new Learner(this);

 connect(learner, SIGNAL(gatherData(int,int,QString,QString)), this,

SLOT(startGathering(int,int,QString,QString)));

 connect(ui->actionGather_data, SIGNAL(triggered()), this,

SLOT(openLearnerDialog()));

 connect(ui->actionDo_Magic, SIGNAL(triggered(bool)), this,

SLOT(enableMagic(bool)));

 terminal = new SerialTerminal(this);

 connect(ui->actionTerminal, SIGNAL(triggered()), this, SLOT(openTerminal()));

 connect(terminal,SIGNAL(sendToSerial(QByteArray)),this,

SLOT(sendSerialData(QByteArray)));

 connect(ui->actionExit, SIGNAL(triggered()), this, SLOT(close()));

 numberOfDataStillNeeded = 0;

 ui->progressBar->setVisible(false);

 connect(ui->actionSimulate_Keyboard, SIGNAL(triggered()), this,

SLOT(openSimulateKeyboard()));

 keyboardPlayground = new SimulateKeyboard(this);

 numberOfSamples = NOSAMPS;

 dataASecondT = new QTimer(this);

 connect(dataASecondT, SIGNAL(timeout()), this, SLOT(dataASecond()));

 collected = 0;

}

void MainWindow::sendDeviceSettings(int min, int max, int n)

{

 qDebug() << "Sending 2: " << QString("%1 %2

%3").arg(min).arg(max).arg(n).toLatin1();

 this->sendSerialData("s");

 this->sendSerialData("c");

 QByteArray configData = QByteArray(QString("%1 %2

%3\n").arg(min).arg(max).arg(n).toLatin1());

 sendSerialData(configData);

 //this->sendSerialData("r");

 this->sendSerialData("d");

}

void MainWindow::openSimulateKeyboard()

{

 if(gestureNameList.size() == 0)

 {

 QMessageBox::critical(this, "Error", "Before using keyboard playground you

must load model file.");

Page | 90

 return;

 }

 keyboardPlayground->show();

 keyboardPlayground->setGestures(gestureNameList);

}

void MainWindow::enableMagic(bool enable)

{

 //Is pattern recognition enabled?

 if(enable)

 {

 gestureNameList.clear();

 QString fileName = QFileDialog::getOpenFileName(this,

 tr("Open SVM model"), "",

 tr("SVM model data (*.model);;All Files (*)"));

 if (fileName.isEmpty())

 {

 ui->actionDo_Magic->blockSignals(true);

 ui->actionDo_Magic->setChecked(false);

 ui->actionDo_Magic->blockSignals(false);

 return;

 }

 else

 {

 //QFile file(fileName);

 QDir dir;

 //qDebug() << dir.absoluteFilePath("gesture.svm.model");

 char buffer[1024];

 strcpy(buffer, fileName.toStdString().c_str());

 // Load SVM model in its data structure

 if((model=svm_load_model(buffer))==0)

 {

 QMessageBox::critical(this, tr("Error"), tr("Can't open model

file."));

 exit(1);

 }

 fileName.chop(5);

 QFile file(fileName.append("range"));

 if(!file.open(QIODevice::ReadOnly))

 {

 QMessageBox::critical(0, tr("Error"), file.errorString());

 return;

 }

 //Read the range, so we can perform scaling later

 QTextStream in(&file);

 in.readLine(); in.readLine();

 while(!in.atEnd())

 {

 QString line = in.readLine();

 QStringList fields = line.split(" ");

 int i = fields.at(0).toInt() - 1;

 double min = fields.at(1).toDouble();

 double max = fields.at(2).toDouble();

 rmin[i] = min;

 rmax[i] = max;

 //qDebug() << i << rmin[i] << rmax[i];

 }

 file.close();

 fileName.chop(5);

 //Read the names of gestures

 file.setFileName(fileName.append("name"));

 if(!file.open(QIODevice::ReadOnly))

 {

 QMessageBox::critical(0, tr("Error"), file.errorString());

 return;

 }

 in.setDevice(&file);

 while(!in.atEnd())

Page | 91

 {

 gestureNameList.push_back(in.readLine());

 }

 file.close();

 }

 ui->statusBar->showMessage("SVM model loaded, ready to do some magic");

 }

}

void MainWindow::openTerminal()

{

 terminal->show();

}

void MainWindow::openSettings()

{

 settings->exec();

}

void MainWindow::openLearnerDialog()

{

 learner->show();

}

void MainWindow::startGathering(int amount, int id, QString file, QString name)

{

 //initiates data gathering for learning

 numberOfDataStillNeeded = amount;

 numberOfDataNeeded = amount;

 ui->progressBar->setRange(0, amount);

 ui->progressBar->setVisible(true);

 this->id = id;

 this->file = file;

 this->gestureName = name;

 gatheredData.clear();

}

void MainWindow::doSomeMagic(QVector<double> samp)

{

 struct svm_node features[numberOfSamples+1];

 double *decVals;

 int x, noLabels, noDecVals;

 double r;

 noLabels = svm_get_nr_class(model);

 noDecVals=noLabels*(noLabels-1)/2;

 decVals=(double*)malloc(sizeof(double)*noDecVals);

 //Perform data scaling from -1 to 1

 for(x=0; x<numberOfSamples; x++)

 {

 features[x].index = x;

 r=(samp[x]-rmin[x+1]);

 r=r /(rmax[x+1]-rmin[x+1]);

 r=(r*2)-1;

 features[x+1].value = r;

 }

 features[x].index = -1;

 //Get the ID of closest data cluster

 r = svm_predict_values(model, features, decVals);

 writeToLogger(QString("Prediction value: %1 %2\n").arg(r));

 /*switch((int)r)

 {

 case 1: ui->gestureLbl->setText("One finger"); break;

 case 2: ui->gestureLbl->setText("Four fingers"); break;

 case 4: ui->gestureLbl->setText("Two fingers"); break;

 case 3: ui->gestureLbl->setText("Hand near by"); break;

 default: ui->gestureLbl->setText("Nothing");

 }*/

Page | 92

 //Print the name of gesture

 if((int)r < gestureNameList.size())

 ui->gestureLbl->setText(gestureNameList.at((int)r));

 //If key board simulator is open, emulate key press

 if(keyboardPlayground->isVisible())

 keyboardPlayground->gesture((int)r);

}

void MainWindow::plot(QVector<double> values)

{

 ui->plot->clearGraphs();

 ui->plot->addGraph();

 ui->plot->graph(0)->setPen(QPen(Qt::blue)); // line color blue for first graph

 ui->plot->graph(0)->setBrush(QBrush(QColor(0, 0, 255, 20))); // first graph will

be filled with translucent blue

 QVector<double> x;

 for (int i=0; i<values.size(); ++i)

 {

 x.push_back(i*FREQUENCY_STEP);

 }

 // configure right and top axis to show ticks but no labels:

 // (see QCPAxisRect::setupFullAxesBox for a quicker method to do this)

 ui->plot->xAxis2->setVisible(true);

 ui->plot->xAxis2->setTickLabels(false);

 ui->plot->yAxis2->setVisible(true);

 ui->plot->yAxis2->setTickLabels(false);

 // make left and bottom axes always transfer their ranges to right and top axes:

 connect(ui->plot->xAxis, SIGNAL(rangeChanged(QCPRange)), ui->plot->xAxis2,

SLOT(setRange(QCPRange)));

 //connect(ui->plot->yAxis, SIGNAL(rangeChanged(QCPRange)), ui->plot->yAxis2,

SLOT(setRange(QCPRange)));

 // pass data points to graphs:

 ui->plot->graph(0)->setData(x, values);

 // let the ranges scale themselves so graph 0 fits perfectly in the visible area:

 ui->plot->graph(0)->rescaleAxes();

 ui->plot->yAxis->setRange(0, 1000*VOLTAGE);

 ui->plot->xAxis->setRange(0, values.size()*FREQUENCY_STEP);

 // Note: we could have also just called ui->plot->rescaleAxes(); instead

 // Allow user to drag axis ranges with mouse, zoom with mouse wheel and select

graphs by clicking:

 ui->plot->setInteractions(QCP::iRangeDrag | QCP::iRangeZoom |

QCP::iSelectPlottables);

 ui->plot->replot();

}

void MainWindow::openSerialPort()

{

 //Read settings from registry

 QSettings settings("HKEY_CURRENT_USER\\Software\\Rastro\\Kulaks",

 QSettings::NativeFormat);

 serial->setPortName(settings.value("Serial/port").toString());

 //Try to open serial device

 if (serial->open(QIODevice::ReadWrite))

 {

 if(serial->setBaudRate(settings.value("Serial/baudrate").toInt()) &&

 serial->setParity(QSerialPort::NoParity) &&

 serial->setStopBits(QSerialPort::OneStop) &&

 serial->setFlowControl(QSerialPort::NoFlowControl)

)

 {

 ui->statusBar->showMessage("Connected");

 ui->actionConnect->setEnabled(false);

 ui->actionDisconnect->setEnabled(true);

 }

 else

 {

 serial->close();

 QMessageBox::critical(this, tr("Error"), serial->errorString());

 ui->statusBar->showMessage(tr("Open error"));

 }

Page | 93

 }

 else

 {

 QMessageBox::critical(this, tr("Error"), serial->errorString());

 ui->statusBar->showMessage(tr("Configure error"));

 }

 //sendSerialData(QByteArray(QString("Hello from Qt").toLatin1()));

 sendSerialData("q"); //RESET the XMEGA

 this->thread()->msleep(150); //Wait for xmega to reinitiliaze

 //Send the configuration to the hardware

 this->sendDeviceSettings(settings.value("Dev/min").toInt(),

settings.value("Dev/max").toInt(), settings.value("Dev/n").toInt());

}

void MainWindow::closeSerialPort()

{

 serial->close();

 ui->statusBar->showMessage(tr("Disconnected"));

 ui->actionConnect->setEnabled(true);

 ui->actionDisconnect->setEnabled(false);

}

void MainWindow::sendSerialData(QByteArray data)

{

 serial->write(data);

 serial->waitForBytesWritten(2000);

}

//reads data from serial

void MainWindow::readData()

{

 //QByteArray data = serial->readLine();

 QByteArray data = serial->readAll(); //Read all buffer

 if(terminal->isVisible())

 terminal->writeToTerminal(QString(data)); //If terminal is visible print

results

 allData.append(data); //Append to our own buffer

 //allData = data;

 //qDebug() << allData.size();

 if(allData.contains("{")) //If buffer contains beining of data

 { //Make sure that unused data beforehand are deleted

 allData.remove(0, allData.indexOf("{"));

 if(!dataASecondT->isActive())

 dataASecondT->start(1000);

 }

 // If data contains both curly brackets, WE GOT DATA

 if(allData.indexOf("{") == 0 && allData.contains("}"))

 {

 QByteArray tempData = allData;

 //Extract the received data

 tempData = tempData.mid(allData.indexOf("{")+1, allData.indexOf("}")-1);

 allData.remove(0, allData.indexOf("}")+1);

 QString tempStr(tempData);

 QStringList tempList = tempStr.split(" ");

 QVector<double> numbers;

 //Convert extracted data to voltage

 foreach(QString str, tempList)

 {

 if(!str.isEmpty())

 {

Page | 94

 //numbers.push_back(str.toDouble()*VOLTAGE);

 numbers.push_back((str.toDouble() * 2.7/ 4096.0f) - 0.135f);

 }

 }

 numberOfSamples = numbers.size();

 writeToLogger(QString("Extracted numbers: %1\tGathered data:

%2\n").arg(numbers.size()).arg(gatheredData.size()));

 plot(numbers); // <- plot the new results

 if(ui->actionDo_Magic->isChecked()) //If SVM classifier is enabled

 {

 doSomeMagic(numbers); //Do pattern recognition

 }

 if(numberOfDataStillNeeded > 1) //Does SVM learner need more data?

 {

 gatheredData.push_back(numbers);

 if(gatheredData.size()%10 == 0)

 ui->progressBar->setValue(numberOfDataNeeded-numberOfDataStillNeeded);

 }

 else if(numberOfDataStillNeeded == 1) //If enough has gathered, save to SVM

file

 {

 ui->progressBar->setVisible(false);

 gatheredData.push_back(numbers);

 //time to save svm file

 QFile file(this->file);

 if (!file.open(QIODevice::Append))

 {

 QMessageBox::information(this, tr("Unable to open file"),

 file.errorString());

 return;

 }

 else

 {

 QTextStream out(&file);

 if(file.size() > 0)

 out << endl;

 for(int d=0; d<gatheredData.size(); d++)//QVector< double > data,

gatheredData)

 {

 QVector<double> data = gatheredData.at(d);

 out << this->id << " ";

 for(int i=0; i<data.size(); i++)

 if(data.size()-1 != i || d == gatheredData.size()-1)

 out << QString::number(i+1) << ":" << QString::number(

data[i]) << " ";

 else

 out << QString::number(i+1) << ":" << QString::number(

data[i]) << endl;

 }

 writeToLogger("Data saved to " + this->file);

 file.close();

 }

 //time to save name file

 this->file.append(".name");

 file.setFileName(this->file);

 if (!file.open(QIODevice::Append))

 {

 QMessageBox::information(this, tr("Unable to open file"),

 file.errorString());

 return;

 }

 else

 {

 QTextStream out(&file);

 out << this->gestureName << endl;

Page | 95

 }

 file.close();

 }

 if(numberOfDataStillNeeded != 0)

 numberOfDataStillNeeded--;

 collected++;

 }

}

void MainWindow::dataASecond()

{

 //qDebug() << collected;

 ui->lblDataASecond->setText(QString::number(collected) + " data/second");

 //Code for measuring the performance of the device.

 //Every second stores how many data points were collected

// QFile file ("avg_conv_data.txt");

// if (!file.open(QIODevice::Append))

// {

// QMessageBox::information(this, tr("Unable to open file"),

// file.errorString());

// return;

// }

// else

// {

// QTextStream out(&file);

// out << QString::number(collected) << " ";

// }

// file.close();

 collected = 0;

}

void MainWindow::writeToLogger(QString text)

{

 //Writes text to bottom debugger text area

 if(ui->console->toPlainText().length() > 10000)

 ui->console->clear();

 ui->console->insertPlainText(text);

 QTextCursor c = ui->console->textCursor();

 c.movePosition(QTextCursor::End);

 ui->console->setTextCursor(c);

}

MainWindow::~MainWindow()

{

 delete ui;

}

Page | 96

SerialTerminal.h file
#ifndef SERIALTERMINAL_H

#define SERIALTERMINAL_H

#include <QMainWindow>

#include <QToolBar>

#include <QKeyEvent>

#include <QDebug>

namespace Ui {

class SerialTerminal;

}

class SerialTerminal : public QMainWindow

{

 Q_OBJECT

public:

 explicit SerialTerminal(QWidget *parent = 0);

 ~SerialTerminal();

 void writeToTerminal(QString text);

protected:

 void keyReleaseEvent(QKeyEvent *e);

private slots:

 void commandSend();

signals:

 void sendToSerial(QByteArray data);

private:

 Ui::SerialTerminal *ui;

};

#endif // SERIALTERMINAL_H

Page | 97

SerialTerminal.cpp file
#include "serialterminal.h"

#include "ui_serialterminal.h"

SerialTerminal::SerialTerminal(QWidget *parent) :

 QMainWindow(parent),

 ui(new Ui::SerialTerminal)

{

 ui->setupUi(this);

 QToolBar *toolBar = new QToolBar("Terminal Tools", this);

 QAction *clearAction = new QAction(QIcon(":/images/edit-clear.png"),

"Clear",toolBar);

 toolBar->addAction(clearAction);

 connect(clearAction, SIGNAL(triggered()), ui->terminal, SLOT(clear()));

 connect(ui->sendBtn, SIGNAL(clicked()), this, SLOT(commandSend()));

 this->addToolBar(toolBar);

}

void SerialTerminal::keyReleaseEvent(QKeyEvent *e)

{

 if(e->key() == Qt::Key_Return)

 emit sendToSerial(QByteArray(QString("\n").toLatin1()));

 else

 emit sendToSerial(QByteArray(QString(e->text()).toLatin1()));

 //QMainWindow::keyReleaseEvent(e);

}

void SerialTerminal::commandSend()

{

 emit sendToSerial(QByteArray(QString(ui->cmdEdit-

>text().append("\n")).toLatin1()));

}

void SerialTerminal::writeToTerminal(QString text)

{

 text.replace("\n\r", "\n");

 text.replace("\r\n", "\n");

 ui->terminal->insertPlainText(text);

 QTextCursor c = ui->terminal->textCursor();

 c.movePosition(QTextCursor::End);

 ui->terminal->setTextCursor(c);

}

SerialTerminal::~SerialTerminal()

{

 delete ui;

}

Page | 98

Settings.h file
#ifndef SETTINGS_H

#define SETTINGS_H

#include <QDialog>

#include <QDebug>

#include <QSerialPortInfo>

#include <QSettings>

#include <QFileDialog>

namespace Ui {

class Settings;

}

class Settings : public QDialog

{

 Q_OBJECT

public:

 explicit Settings(QWidget *parent = 0);

 ~Settings();

signals:

 void deviceSettings(int min, int max, int n);

private slots:

 void loadSettings();

 void saveSettings();

 void pythonPathBtn();

 void gnuplotPathBtn();

private:

 Ui::Settings *ui;

};

#endif // SETTINGS_H

Page | 99

Settings.cpp file
#include "settings.h"

#include "ui_settings.h"

Settings::Settings(QWidget *parent) :

 QDialog(parent),

 ui(new Ui::Settings)

{

 ui->setupUi(this);

 QList<QSerialPortInfo> ports = QSerialPortInfo::availablePorts();

 foreach(QSerialPortInfo port, ports)

 ui->serialPort->addItem(port.portName());

 foreach(qint32 baudrate, QSerialPortInfo::standardBaudRates())

 ui->baudrate->addItem(QString::number(baudrate));

 connect(ui->buttonBox, SIGNAL(accepted()), this, SLOT(saveSettings()));

 connect(ui->pythonBtn, SIGNAL(clicked()), this, SLOT(pythonPathBtn()));

 connect(ui->gnuPlotBtn, SIGNAL(clicked()), this, SLOT(gnuplotPathBtn()));

 loadSettings();

}

void Settings::gnuplotPathBtn()

{

 QString fileName = QFileDialog::getOpenFileName(this, tr("Select Gnuplot"),

 "",

 tr("Files (*.*)"));

 ui->gnuPlotPath->setText(fileName);

 saveSettings();

}

void Settings::pythonPathBtn()

{

 QString fileName = QFileDialog::getOpenFileName(this, tr("Select Python"),

 "",

 tr("Files (*.*)"));

 ui->pythonPath->setText(fileName);

 saveSettings();

}

//SAves settings in the registry

void Settings::saveSettings()

{

 QSettings settings("HKEY_CURRENT_USER\\Software\\Rastro\\Kulaks",

 QSettings::NativeFormat);

 settings.setValue("Serial/port", ui->serialPort->currentText());

 settings.setValue("Serial/baudrate", ui->baudrate->currentText());

 //Send new settings to the hardware

 emit deviceSettings(ui->minFreqSpinBox->value(), ui->maxFreqSpinBox->value(), ui-

>frequencyCountSpinbox->value());

 settings.setValue("Dev/min", ui->minFreqSpinBox->value());

 settings.setValue("Dev/max", ui->maxFreqSpinBox->value());

 settings.setValue("Dev/n", ui->frequencyCountSpinbox->value());

 settings.setValue("python", ui->pythonPath->text());

 settings.setValue("gnuplot", ui->gnuPlotPath->text());

}

//loads settings from the registry

void Settings::loadSettings()

{

 QSettings settings("HKEY_CURRENT_USER\\Software\\Rastro\\Kulaks",

 QSettings::NativeFormat);

 ui->serialPort->setCurrentText(settings.value("Serial/port").toString());

 ui->baudrate->setCurrentText(settings.value("Serial/baudrate").toString());

Page | 100

 ui->minFreqSpinBox->setValue(settings.value("Dev/min").toInt());

 ui->maxFreqSpinBox->setValue(settings.value("Dev/max").toInt());

 ui->frequencyCountSpinbox->setValue(settings.value("Dev/n").toInt());

 ui->pythonPath->setText(settings.value("python").toString());

 ui->gnuPlotPath->setText(settings.value("gnuplot").toString());

}

Settings::~Settings()

{

 delete ui;

}

Page | 101

CustomTreeWidget.h file
#ifndef CUSTOMTREEWIDGET_H

#define CUSTOMTREEWIDGET_H

#include <QTreeWidget>

class CustomTreeWidget : public QTreeWidget

{

 Q_OBJECT

public:

 explicit CustomTreeWidget(QWidget *parent = 0);

protected:

 void keyReleaseEvent(QKeyEvent *e);

 void keyPressEvent(QKeyEvent *event);

signals:

public slots:

};

#endif // CUSTOMTREEWIDGET_H

CustomTreeWidget.cpp file
#include "customtreewidget.h"

CustomTreeWidget::CustomTreeWidget(QWidget *parent) :

 QTreeWidget(parent)

{

}

void CustomTreeWidget::keyPressEvent(QKeyEvent *event)

{

 return;

}

void CustomTreeWidget::keyReleaseEvent(QKeyEvent *e)

{

 return;

}

Page | 102

KeyBinder.h file
#ifndef KEYBINDER_H

#define KEYBINDER_H

#include <QLineEdit>

#include <QDebug>

#include <QKeyEvent>

class KeyBinder : public QLineEdit

{

 Q_OBJECT

public:

 explicit KeyBinder(QWidget *parent = 0);

protected:

 void keyReleaseEvent(QKeyEvent *e);

signals:

public slots:

};

#endif // KEYBINDER_H

KeyBinder.cpp file
#include "keybinder.h"

KeyBinder::KeyBinder(QWidget *parent) :

 QLineEdit(parent)

{

 this->setReadOnly(true);

 this->setFocusPolicy(Qt::StrongFocus);

}

void KeyBinder::keyReleaseEvent(QKeyEvent *e)

{

 qDebug() << "Key released:" << e->key() << Qt::Key_Up;

 /*if(e->key() == Qt::Key_Up)

 this->setText("Up");

 else if(e->key() == Qt::Key_Down)

 this->setText("Down");

 else if(e->key() == Qt::Key_Left)

 this->setText("Left");

 else if(e->key() == Qt::Key_Right)

 this->setText("Right");

 else if(e->key() == Qt::Key_Space)

 this->setText("Space");

 else

 this->setText(e->text());*/

 this->setText(QString::number(e->key()));

}

Page | 103

KeyDelegate.h file
#ifndef KEYDELEGATE_H

#define KEYDELEGATE_H

#include <QStyledItemDelegate>

#include "keybinder.h"

class KeyDelegate : public QStyledItemDelegate

{

 Q_OBJECT

public:

 explicit KeyDelegate(QObject *parent = 0);

 QWidget *createEditor(QWidget *parent, const QStyleOptionViewItem &option,

 const QModelIndex &index) const;

 void setEditorData(QWidget *editor, const QModelIndex &index) const;

 void setModelData(QWidget *editor, QAbstractItemModel *model,

 const QModelIndex &index) const;

 void updateEditorGeometry(QWidget *editor,

 const QStyleOptionViewItem &option, const QModelIndex &index) const;

signals:

public slots:

};

#endif // KEYDELEGATE_H

Page | 104

KeyDelegate.cpp file
#include "keydelegate.h"

KeyDelegate::KeyDelegate(QObject *parent) :

 QStyledItemDelegate(parent)

{

}

QWidget *KeyDelegate::createEditor(QWidget *parent,

 const QStyleOptionViewItem &/* option */,

 const QModelIndex &/* index */) const

{

 KeyBinder *editor = new KeyBinder(parent);

 return editor;

}

void KeyDelegate::setEditorData(QWidget *editor,

 const QModelIndex &index) const

{

 //If tree widget double clicked, it will initiate this method

 QString value = index.model()->data(index, Qt::EditRole).toString();

 KeyBinder *spinBox = static_cast<KeyBinder*>(editor);

 spinBox->setText(value);

}

void KeyDelegate::setModelData(QWidget *editor, QAbstractItemModel *model,

 const QModelIndex &index) const

{

 //First lets set known data from tree widget

 KeyBinder *spinBox = static_cast<KeyBinder*>(editor);

 //QLineEdit->interpretText();

 QString value = spinBox->text();

 model->setData(index, value, Qt::EditRole);

 spinBox->releaseKeyboard();

}

void KeyDelegate::updateEditorGeometry(QWidget *editor,

 const QStyleOptionViewItem &option, const QModelIndex &/* index */) const

{

 //Perform widget scaling to fill the tree widget's field

 editor->setGeometry(option.rect);

}

Page | 105

SimulateKeyboard.h file
#ifndef SIMULATEKEYBOARD_H

#define SIMULATEKEYBOARD_H

#include <QDialog>

#include <QDebug>

#include "keydelegate.h"

#include "customtreewidget.h"

#include <windows.h>

namespace Ui {

class SimulateKeyboard;

}

class SimulateKeyboard : public QDialog

{

 Q_OBJECT

public:

 explicit SimulateKeyboard(QWidget *parent = 0);

 ~SimulateKeyboard();

 void setGestures(QStringList gestures);

 void gesture(int g);

private slots:

 void sendKeys(bool enabled);

private:

 Ui::SimulateKeyboard *ui;

 QStringList availableGestures;

};

#endif // SIMULATEKEYBOARD_H

Page | 106

SimulateKeyboard.cpp file
#include "simulatekeyboard.h"

#include "ui_simulatekeyboard.h"

SimulateKeyboard::SimulateKeyboard(QWidget *parent) :

 QDialog(parent),

 ui(new Ui::SimulateKeyboard)

{

 ui->setupUi(this);

 ui->keyMap->setItemDelegate(new KeyDelegate(this));

 ui->keyMap->setFocusPolicy(Qt::NoFocus);

 connect(ui->simulateBtn, SIGNAL(clicked(bool)), this, SLOT(sendKeys(bool)));

}

void SimulateKeyboard::gesture(int g)

{

// if(ui->keyMap->topLevelItem(g)->text(1).isEmpty())

// return;

 INPUT ip;

 // Set up a generic keyboard event.

 ip.type = INPUT_KEYBOARD;

 ip.ki.wScan = 0; // hardware scan code for key

 ip.ki.time = 0;

 ip.ki.dwExtraInfo = 0;

 // Press the "A" key

 ip.ki.wVk = ui->keyMap->topLevelItem(g)->text(1).toInt(); // virtual-key code for

the "a" key

 ip.ki.dwFlags = 0; // 0 for key press

 SendInput(1, &ip, sizeof(INPUT));

 // Release the "A" key

 ip.ki.dwFlags = KEYEVENTF_KEYUP; // KEYEVENTF_KEYUP for key release

 SendInput(1, &ip, sizeof(INPUT));

}

void SimulateKeyboard::sendKeys(bool enabled)

{

 if(enabled)

 {

 qDebug() << "Starting keyboard simulation";

 INPUT ip;

 Sleep(1000);

 // Set up a generic keyboard event.

 ip.type = INPUT_KEYBOARD;

 ip.ki.wScan = 0; // hardware scan code for key

 ip.ki.time = 0;

 ip.ki.dwExtraInfo = 0;

 // Press the "A" key

 ip.ki.wVk = ui->keyMap->topLevelItem(0)->text(1).toInt(); // virtual-key code

for the "a" key

 ip.ki.dwFlags = 0; // 0 for key press

 SendInput(1, &ip, sizeof(INPUT));

 Sleep(200);

 // Release the "A" key

 ip.ki.dwFlags = KEYEVENTF_KEYUP; // KEYEVENTF_KEYUP for key release

 SendInput(1, &ip, sizeof(INPUT));

 qDebug() << "key press simulated";

 }

}

void SimulateKeyboard::setGestures(QStringList gestures)

{

 this->availableGestures = gestures;

 // ui->keyMap->clear();

 foreach(QString gesture, availableGestures)

 {

 QTreeWidgetItem *newItem = new QTreeWidgetItem(ui->keyMap);

 newItem->setText(0,gesture);

Page | 107

 newItem->setTextAlignment(1, Qt::AlignHCenter);

 newItem->setFlags(newItem->flags() | Qt::ItemIsEditable);

 }

}

SimulateKeyboard::~SimulateKeyboard()

{

 delete ui;

}

Page | 108

F. Appendix
#define SET(x,y) (x |=(1<<y)) //-Bit set/clear macros

#define CLR(x,y) (x &= (~(1<<y))) // |

#define CHK(x,y) (x & (1<<y)) // |

#define TOG(x,y) (x^=(1<<y)) //-+

#define N 160 //How many frequencies

float results[N]; //-Filtered result buffer

float freq[N]; //-Filtered result buffer

int sizeOfArray = N;

 #include <SoftwareSerial.h>

SoftwareSerial mySerial(3, 4); // RX, TX

void setup()

{

 TCCR1A=0b10000010; //-Set up frequency generator

 TCCR1B=0b00011001; //-+

 ICR1=125;

 OCR1A=62;

 pinMode(9,OUTPUT); //-Signal generator pin

 pinMode(8,OUTPUT); //-Sync (test) pin

 pinMode(2, OUTPUT);

 Serial.begin(57600); //115200

Serial.println("Goodnight moon!");

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

 mySerial.println("AT");

 for(int i=0;i<N;i++) //-Preset results

 results[i]=0; //-+

}

void loop()

{

 if (mySerial.available())

 Serial.write(mySerial.read());

 if (Serial.available())

 mySerial.write(Serial.read());

}

void loop2()

{

 unsigned int d;

 int counter = 0;

 for(unsigned int d=0;d<N;d++)

 {

 int v=analogRead(0); //-Read response signal

 CLR(TCCR1B,0); //-Stop generator

 TCNT1=0; //-Reload new frequency

 ICR1=d; // |

 OCR1A=d/2; //-+

 SET(TCCR1B,0); //-Restart generator

 results[d]=results[d]*0.5+(float)(v)*0.5; //Filter results

 freq[d] = d;

Page | 109

Serial.print("{");

 for (unsigned int d=0; d<N; d++) {

 Serial.print(results[d]);

 Serial.print(" ");

 }

 Serial.print("}");

 Serial.println();

}

Page | 110

7 Logbooks

Date Work done and/or meeting minutes.

24rd Sep
2013

Just discussed, the plan of “attack”. In other words, how we will meet, and what
info I’ve got to provide for my lecturer. And signed the project allocation form.

1 Oct
2013

Nothing happened.

Started gathering theoretical materials for my project. Found the original paper
which describes in high detail how they achieved their goal.
http://www.disneyresearch.com/wp-content/uploads/touchechi2012.pdf
http://spritesmods.com/?art=engarde&page=1

Tried to implement first prototype in arduino, and wrote small plotting tool on Qt
for it.

(note: not the actual plotted results from back then)

Conclusion: Rate of change was barely noticeable with the schematics I found on
the second link. It might be due to fact, that I’m using a LED instead of high
frequency diode in my schematic. Just didn’t have one, so I thought I would use
LED. In any case, ordered some 1n4147 diodes and couple 10mH coils, for noise
filtering.

8 Oct
2013

Project manager was busy.

Still waiting for my diodes.

18 Oct My diodes and coils have arrived. Now I can reconstruct the schematics like

http://www.disneyresearch.com/wp-content/uploads/touchechi2012.pdf
http://spritesmods.com/?art=engarde&page=1

Page | 111

2013 provided in this website:
http://www.instructables.com/id/Touche-for-Arduino-Advanced-touch-
sensing/?ALLSTEPS

Now the rate of change is visible much more. I increased from 32 data points to
160 frequencies now. It is easy to spot the difference when multiple gestures are
applied on my test platform. Now it’s time to revise SVM and continue writing the
PC side of application.

Fixed a bug in my plotting tool. It wasn’t consistently reading 160 values from
rs232. It was due to the fact I was using buffer to store my data, and I didn’t
design correct algorithm to extract exactly 160 numbers from it. I forgot to take
into account that data in buffer arrives in different rates. Now it’s fixed.

20 Oct
2013

After some frustration with LIBSVM library managed to understand how to
interact with it. Most of the instructions are how to use pre-built tools, not how to
implement in your application. In any case over the weekend constructed a
working prototype which can differentiate between fours gestures. There is one
small issue when trying to differentiate between two or four fingers, the data is
very similar and SVM sometimes fails to give the correct result.

Here are some screenshots from current application:

http://www.instructables.com/id/Touche-for-Arduino-Advanced-touch-sensing/?ALLSTEPS
http://www.instructables.com/id/Touche-for-Arduino-Advanced-touch-sensing/?ALLSTEPS

Page | 112

Page | 113

After weekend of work, I’ve managed to make pattern recognition for these
gestures

● Nothing
● Hand near by
● One finger
● Two fingers
● Four fingers

However, two fingers can’t be distinguished easily from one or four, and a lot of
times gives false positives. I could try to make sinusoidal waveform generator
and sweep more frequencies, theoretically, it should improve the response.
Here you can see a video of first prototype in action:
http://www.youtube.com/watch?v=xGhG-vS4PJw

Things still to do:

● Improve the response of the gestures.
● Completely integrate libsvm in my application
● FIx a bug: after 3 min of data gathering, my app just starts flickering
● Design a PCB

29 Oct
2013

Had a quick meeting with supervisor about progress, tried to show the project,
didn’t work as expected, apperantly different enviorements have different levels
of noise

2 Oct - 4
Oct 2013

Improved the application, before it was crashing after a while, apperantly I made
a mistake when plotting a graph. Basically I was making new graph object on top
of previous one, and eventually, constructed thousands of them, which crashed
the application. Now I’m reusing the previous one.

Improved the gesture teaching tool. Now you can teach the gestures without

http://www.youtube.com/watch?v=xGhG-vS4PJw

Page | 114

exiting application, and no alteration needed afterwards. The files it will generate
can be automatically runned through the SVM.

Added SVM model loader, so for different devices or environments I can load the
corresponding model quickly.

Circuit used for generating so far in my design:

Source: http://www.instructables.com/file/FR73R4DH2MYISBD

It is not the final circuit I’ll be using, since eventually I will be switching to AC
generator. So it will be slightly different.

As far I understand the circuit it consists of RLC resonant circuit.
source: http://www.electronics-tutorials.ws/accircuits/series-circuit.html

Which is a second-order filter, since I'm using two active components for energy
storage, the inductor and capacitor. When the finger is placed on the electrode,
the capacitance is increased, and a different frequency has the highest pass-
through.
With resonant frequency fc = 52521.1312203[Hz] (with no touch)

http://www.electronics-tutorials.ws/accircuits/series-circuit.html

Page | 115

This is how I’ve set up the wave generator in AVR

 TCCR1A=0b10000010; //-Set up frequency generator
 TCCR1B=0b00011001; //-+

Basically it is set in Fast PWM mode, with TOP being ICR1A register
And compare mode is set to:
Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at

BOTTOM, (non-inverting mode)

And clock selected without pre-scaler.

For AVR it means that the timer works with FCPU frequency, which in my case is
16 MHz. Also I’m taking 160 different frequencies. That means 16MHz / 160 =
100 kHz as one step frequency. Hence, I’m sweeping from 0Hz up to 16MHz

5 Nov
2013

Had a quick discussion with lecturer what is the next step. We discussed that it
would be nice to have a FFT analysis. which I will do at the beginning of next
week. As well over the weekend I did some improvement to my “kulaks”
application.

Basically I added new module “playground” where I intend to make sample
application for the gesture control. As of now, I’ve made “keyboard simulator”
which doesn’t work as good as I expected. Apparently there are limitations when
it comes to simulating a keyboard on windows. As far as I know the default library
only allows to simulate keyboard stroke event, but I wanted a keyboard press
event. I already lost more time on this than I wanted, so I will be coming back to
this a little bit later, since this isn’t an integral part of my project. At least now.
Still waiting for my AC signal generator, should arrive next week, and then I’ll be

Page | 116

able to experiment with touch sensing on human body.

I did an experiment how the touch sensing will change when a glass of water is
used for touch sensing. I noticed that the response significantly increased if a
dielectric material is between the finger and water, in my case glass. Fortunately
for me, one of my coursemates, was experimenting with mylar aka. BoPET
polyester film, which has high dielectric properties and is commonly used in foil
capacitors. So I borrowed some of it and placed on top of my PCB aka. touch
sensing platform, and observed the effects.

Results:
The response, just like for glass significantly increased, and even with a square
wave (PWM) frequency sweep I could detect these gestures: hand near by, one
finger touch, two finger touch, three finger touch, four/five finger touch and a palm
touch. Before I could barely detect one, two or four fingers. Now with ease those
gesture can be distinguished.

As far as I understand why does the performance increases, is that the mylar
shields the user from the PCB plate, and literally makes the PCB plate and user
act as two capacitor plates. Before when user was touching the PCB plate it was
basically grounding the “plate”. However, regarding this article:
http://hyperphysics.phy-astr.gsu.edu/hbase/tables/diel.html

Air has much better dielectric constant, but as far as I know it is very hard to
place a layer of air between the PCB and my finger. Teflon could be used
instead of mylar and could have better performance.
For experimentation purpose I’ll buy some sheets of teflon, just to see how the
capacitive fingerprint will change.

Further reading about electromagentism and capcitance:

http://hyperphysics.phy-astr.gsu.edu/hbase/tables/diel.html

Page | 117

http://www.lightandmatter.com/html_books/0sn/ch11/ch11.html

12 Nov
2013

Just a quick chat about the next step. And REPORT.

19 Nov
2013

Got my ethical review signed.

Received bluetooth for my project.

Basically I bought HC-06 bluetooth.
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://www.exp-tech.de/service/datasheet/HC-Serial-Bluetooth-Products.pdf

It’s a very cheap bluetooth with UART interface with SPP (serial port profile)
support. It enables me to have a serial port via bluetooth on my computer. Just
like connecting the micro-controller to the PC with USB.

I decided to go for bluetooth, so I can make sample application on the smart-
phones as well. Obviously the “best” way is to use some sort of wireless
technology to do that. Just a subjective opinion, who would want more wires
sticking from their phone anyway? Inevitably, I chose bluetooth.

By default the HC-06 works in baudrate 9600. Which is very slow! Too slow for
my project, since I’m sending 160 numbers through it. More precisely
160+2+159=321 bytes

Roughly baud rate of 9600 can transmit 1200 bytes/s
That means 1200 / 321 = ~3.71 refreshes a second. Basically unusable for my
application.

So I investigated whether it is possible to reprogram the HC-06 bluetooth
adapter. And lucky for me, it is.

Basically, before connecting any bluetooth device to the adapter, from micro-
controller I have to send the following command “AT” to enter program mode.
Notice, there are no carriage return and new line character.
Then you can all sorts of things, change the baudrate of the device, the name or
the PIN, and the it will be saved in internal eeprom memory of the bluetooth
dongle. So it has to be done only once.

Here is list of commands you can send to the HC-06:

http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/

Page | 118

source: http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/

To do the configuration of the HC-06 I wrote a quick arduino code, to utilize the
SoftwareSerial library. Basically through normal serial I can do HC-06
programming. It all worked perfectly

Now I can communicate with bluetooth serial port with baud rate of 115000
Which means I can send 14375 bytes/s and my packet can be sent 321/14375 =
0.0223304348 s = 22ms. It is better, but still rather slow.

So I decided to increase the speed even more. To a baud rate of 230400. I have
never seen such a baudrate in my life, probably it isn’t a standard one.

Well I was correct, as soon as I changed it I couldn’t communicate with the HC-
06 anymore through arduino. I should have been more careful, because then I
found this chart: http://www.wormfood.net/avrbaudcalc.php
Which says that for 16MHz clock that baudrate has really high error rate of 7.8%,
and it is considered unusable.

So I tried resetting the bluetooth, didn’t WORK. By triggering Key pin, apparently
it’s not connected. So device goes in 230400 baud rate mode.

Got an Idea how to fix it. I have a FTDI chip laying around, I think I can interface it
dirrectly with the bluetooth adapter and from putty I can set whatever baudrate I
like. Chance of fixing it.

Yup, I was correct, by simply interfacing the FTDI232L with the HC-06 I was able
to communicate in that bizarre baud rate and set it back to 115200. For a split
second I thought I’ll need a new bluetooth. Just have to sit down and think a bit,
and anything can be solved.

Here is a screenshot of arduino communicating with bluetooth serial port:

Lesson learned, be careful when experimenting with baudrates, better check
whether the baudrate has error rate in acceptable norms.

And I tested the SPP mode on android phone as well.
Here is picture of data being received from arduino:

http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-module/
http://www.wormfood.net/avrbaudcalc.php

Page | 119

you will just have to take my word that I sent it from arduino.

At least I’ve proved that the concept works, the next step would be to start putting
the big pieces together. Unfortunately iPhone asks for a licence to RCOMM
protocol. So for prototyping reasons I will be avoiding “money hungry” apple
products. However, if I eventually use bluetooth with HID profile, it could be
connected without to any smart phone with bluetooth and use basic phone
functions instead of writing a specific interface application.

Date Work done and/or meeting minutes.

13/12/13-
01/01/14

Successfully interfaced the sine wave function generator with my arduino. The
function generator basically receives the inputs through something similar to SPI
protocol. The function generator I’m using is called AD9850 it can generate pure
sine wave up to 50 Mhz.

Obviously I wrote a simple library for interfacing the AD9850 function generator.

However, by using a function generator I will need to change my circuit a little bit,
because when the user touches the micro-controller receives a sine wave back
into the adc. The solution is to use envelope detection to only send amplitude of
the sine wave to the micro-controllers adc.

02/01/14-
25/01/14

I’ve been working on designing the main motherboard for my project which will
consist of ARM TMS570 cortex r4 32 bit microprocessor. I intend to do pattern
recognition on the main board itself instead of the computer or smartphone. To
do so I acquired a development board from texas instruments for that particular

Page | 120

CPU.

I’ve successfully managed to interface it with the function generator and bluetooth
module. I still need to interface a RAM module with the cpu so the board has
enough memory to do the pattern recognition otherwise it only has 160kb of
memory available, which is not nearly enough.

Parallel to experimenting with the development kit, I've been designing the circuit
diagram on eagle. So far I’ve finished the the basic interfacing with the ARM CPU
and power supply.

Main cpu circuit

Power supply circuit

The circuit design is mainly based on the development board I acquired from TI

Page | 121

(texas instruments). They were kind enough to release the full circuit diagram for
the development kit.

As of now I’ve been struggling a lit bit to get ERIF module to work on the CPU,
which is responsible for interfacing with SDRAM + RTOS operating system.

Even though an operating system in my opinion is not an essential part of the
design of the touch sensor, it will ease the development considerably.

Page | 122

8 Bibliography
1 admin. (2007, 3 29). Clocking ARM with Crystal oscillator and PLL . Retrieved 1 2014,

from ARM GCC Tutorial: http://winarm.scienceprog.com/arm-mcu-types/clocking-arm-

with-crystal-oscillator-and-pll.html

2 Admin. (2011, 3 10). Using standard IO stream in AVR GCC. Retrieved 3 2014, from

EMBEDS: http://www.embedds.com/using-standard-io-streams-in-avr-gcc/

3 Aisen, B. (2006, 12 15). A Comparison of Multiclass SVM Methods. Retrieved 09 28,

2013, from MIT: http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-

project/

4 Atmel. (2013). 8/16-bit Atmel AVR xmega microcontrollers. Retrieved 02 05, 2014, from

Atmel: http://www.atmel.com/Images/Atmel-8153-8-and-16-bit-AVR-Microcontroller-

XMEGA-E-ATxmega8E5-ATxmega16E5-ATxmega32E5_Datasheet.pdf

5 Ben-Hur, A., & Weston, J. (NA). A USer's guid to support vector machines. Colorado

State University.

6 Camera, D. (2009, 12 16). Open Source XMEGA PDI Programmer! Retrieved 2 2014,

from Memos From The Cube: http://fourwalledcubicle.com/blog/2009/12/open-

source-xmega-pdi-programmer/

7 Composition of the ESPEN Working Group. (2004). Bioelectrical impedance analysis -

part1: review of principles and methods. Clinical Nutrition.

8 Crowell, B. (n.d.). Light And Matter. Retrieved 11 12, 2013, from Electromagnetism:

http://www.lightandmatter.com/html_books/0sn/ch11/ch11.html

9 Disney. (2013). Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and

Everyday Objects. Retrieved 09 29, 2013, from Disney:

http://www.disneyresearch.com/wp-content/uploads/touchechi2012.pdf

10 GeekPhysical. (2012, 06 24). Arduino do the Touché dance . Retrieved 10 2013, from

Dzl's Evil Genius Lair: http://dzlsevilgeniuslair.blogspot.se/2012/05/arduino-do-touche-

dance.html

11 Google. (2013, 11 15). BluetoothSocket. Retrieved 11 15, 2013, from Developers:

http://developer.android.com/reference/android/bluetooth/BluetoothSocket.html

12 Goudge, L. (2013, 9 28). AD9850 function generator SPI driver. Retrieved 11 2013, from

mbed: http://mbed.org/users/liamg/code/AD9850-function-generator-SPI-driver/

13 Iwata, T., Houlsby, N., & Ghahramani, Z. (NA). Active Learning for Interactive

Visualization. Cambridge: University of Cambridge.

14 Lin, C.-C. C.-J. (2013, 04 01). A Library for Support Vector Machines. Retrieved 09 29,

2013, from LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Page | 123

15 Maxim Integrated. (2001, 9 7). EPOT Applications: Offset Adjustment in Op-Amp

Circuits. Retrieved 4 2014, from Maxim Integrated:

http://www.maximintegrated.com/app-notes/index.mvp/id/803

16 Microsoft. (n.d.). The Standard SVM Formulation. Retrieved 09 28, 2013, from

Microsoft: http://research.microsoft.com/en-us/um/people/manik/projects/trade-

off/svm.html

17 Mitchel, C. (n.d.). 50 - 555 Circuits. Retrieved 3 2014, from talking electronics:

http://www.talkingelectronics.com/projects/50%20-%20555%20Circuits/50%20-

%20555%20Circuits.html

18 NA. (n.d.). AD9850 Library. Retrieved 11 2013, from GRSynth:

http://grsynth.com/ad9850-library/

19 NA. (n.d.). Envelope Detector. Retrieved 3 2014, from

http://seniord.ee.iastate.edu/SSOL/RADAR/prjpln99/detector3.html

20 NA. (2012, 10 13). Float/Double printf(), scanf() in ATMEL Studio 6. Retrieved 3 2014,

from Rohde Engineering Blog: http://blog.ib-rohde.de/printf_float_atmelstudio6/

21 NA. (n.d.). Passive Band Pass Filter. Retrieved 11 2013, from Electronics Tutorial:

http://www.electronics-tutorials.ws/filter/filter_4.html

22 NA. (n.d.). Peak detector circuit. Retrieved 1 2014, from Electronics:

http://www.prolectron.com/elect/

23 palowireless. (2007, 01 05). Bluetooth Tutorial - Profiles. Retrieved 11 9, 2013, from

palowireless - Bluetooth Resource Center:

http://www.palowireless.com/infotooth/tutorial/profiles.asp

24 Pratt, S. (2006, 10). Capacitance Sensors for Human Interfaces to Electronic Equipment.

Retrieved 10 2013, from Analog Dialogue:

http://www.analog.com/library/analogdialogue/archives/40-10/cap_sensors.html

25 Quispe-Ayala, M. R., Asalde-Alvarez, K., & Roman-Gonzalez, A. (2010). Image

Classification Using Data Compression. Paris: Universidad Nacional San Antonio Abad

del Cusco – UNSAAC.

26 Rekimoto, J. SmartSkin: An Infrastructure for Freehand Manipulation on Interactive

Surfaces. Tokyo: Sony Computer Science Laboratories, Inc.

27 Sprite. (2013). En Garde, a classifying capacitive touch sensor - Intro. Retrieved 11 5,

2013, from SpritesMods: http://spritesmods.com/?art=engarde

28 Styger, E. (2013, 7 19). Using the HC-06 Bluetooth Module. Retrieved 11 2013, from

mcuoneclipse: http://mcuoneclipse.com/2013/06/19/using-the-hc-06-bluetooth-

module/

Page | 124

29 SZu. (2012, 8 15). ATxmega programmer for $0.50 . Retrieved 2 2014, from ATxmega

and company: http://szulat.blogspot.co.uk/2012/08/atxmega-programmer-for-

050.html

30 Texas Instruments . (n.d.). TMS570LS Microcontrollers:Blinky example. Retrieved 1

2014, from TI:

ftp://entc.tamu.edu/ENTC369/Laboratory/Reference/TMS570/TMS570LS2x_Blinky_Exa

mple.pdf

31 Texas Instruments. (2011, 9). Configuring the Hercules ™ ARM ® Safety MCU SCI/LIN

Module for UART Communication. Retrieved 1 2014, from TI:

http://www.ti.com/lit/an/spna124a/spna124a.pdf

32 tobias. (2006, 11 11). AD9833 / AD5932 Interface. Retrieved 11 2013, from Tobiscorner:

http://tobiscorner.floery.net/ad9833-ad5932-interface/

33 USB Implementers' Forum. (2001, 06 27). Device Class Definition for Human Interface

Devices (HID). Retrieved 11 12, 2013, from USB:

http://www.usb.org/developers/devclass_docs/HID1_11.pdf

34 Viktoriia Sharmanska, Novi Quadrianto, & Lampert, C. H. (2010). Augmented Attribute

Representations. Cambridge: University of Cambridge.

	2 Introduction
	2.1 Problem description
	2.2 Outcomes and goals
	2.3 GD system architecture
	2.4 Organization of the report

	3 Background research
	3.1 Capacitive touch sensing
	3.1.1 Measuring charge time
	3.1.2 Distributing the voltage between the object and another capacitor

	3.2 Capacitive touchscreens
	3.3 Current capacitive technology evaluation
	3.4 Similar research
	3.5 Disney touché
	3.6 SmartSkin

	4 Designing GD system
	4.1 Hardware
	4.1.1 Initial design
	4.1.1.1 Initial circuit
	4.1.1.2 PWM frequency sweep
	4.1.1.3 Hardware prototypes

	4.1.2 Function generator AD9850
	4.1.2.1 Programming AD9850
	4.1.2.2 AD9850 Library methods and usage

	4.1.3 Amplification and electrode excitation stage
	4.1.3.1 Thevenin Equivalent Circuit

	4.1.4 Peak detector and buffer stage
	4.1.5 Wireless communication – Bluetooth
	4.1.5.1 HC-06 Bluetooth module

	4.1.6 Main processing unit
	4.1.6.1 TI ARM TMS570
	4.1.6.1.1 Problems with Texas Instruments TMS570

	4.1.6.2 Atmel Xmega16e5
	4.1.6.2.1 Breakout board
	4.1.6.2.2 Configuring xmega system clock
	4.1.6.2.3 Configuring USART for serial communication with Bluetooth
	4.1.6.2.4 Configuring ADC
	4.1.6.2.5 GD systems firmware

	4.1.7 PCB manufacturing and circuit design
	4.1.7.1 PCB etching
	4.1.7.2 Final circuit and PCB design

	4.1.8 Conclusion

	4.2 Software
	4.2.1 Qt library
	4.2.2 Support Vector Machines (SVM)
	4.2.2.1 Theory
	4.2.2.2 LibSVM

	4.2.3 Main application
	4.2.3.1 MainWindow class
	4.2.3.2 Learner class
	4.2.3.3 Settings class
	4.2.3.4 SerialTerminal class
	4.2.3.5 SimulateKeyboard class

	5 Testing
	6 Conclusion
	Appendices
	A. Appendix
	B. Appendix
	Kulaks_firmware.cpp file
	SerialC.h cpp file
	SerialC.cpp file
	AD9850.h file

	C. Appendix
	PCB design
	/

	D. Appendix
	Bill of material

	E. Appendix
	Main.cpp file
	Learner.h file
	Learner.cpp file
	MainWindow.h file
	MainWindow.cpp file
	SerialTerminal.h file
	SerialTerminal.cpp file
	Settings.h file
	Settings.cpp file
	CustomTreeWidget.h file
	CustomTreeWidget.cpp file
	KeyBinder.h file
	KeyBinder.cpp file
	KeyDelegate.h file
	KeyDelegate.cpp file
	SimulateKeyboard.h file
	SimulateKeyboard.cpp file

	F. Appendix

	7 Logbooks
	8 Bibliography

