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Implementing pulse oximeter using 
MAX30100 

 

For my smart watch project I decided to experiment with sensors for reading pulse. Looking 

around I stumbled upon a sensor made by Maxim – MAX30100. For my surprise once I got 

my development board and delved into the sensor’s datasheet I discovered it’s not as simple 

as just wiring up the sensor to a microcontroller and reading the data. A lot of work you have 

to do yourself. In this tutorial, I’ll try to explain what I’ve learned about pulse oximeter and 

how to make sense of their data. 

Introduction 
In this tutorial I’ll briefly explain how a pulse oximeter works and how to make sense of the 

data coming from MAX30100. This article will be structured in a way where each consecutive 

step will be explained with why such filtering is applied and how it was calculated. Mainly 

the implementation consists of two parts: reading the pulse with IR LED only and calculating 

SaO2 using both RED and IR LEDs.  

By the end of the article you should be able to understand the various stages the signal goes 

through. These methods should be applicable to any sensor even the ones you make 

yourself or made by other manufacturers. 

What is pulse oximeter? 
A pulse oximeter is basically a device which can measure your pulse and oxygen saturation in 

your blood. Usually this sensor consists of two LEDs emitting light: one in Red spectrum 

(650nm) and the other one in Infrared (950nm). This sensor is placed on your finger or 

earlobe, essentially anywhere where the skin is not too thick so both light frequencies can 

easily penetrate the tissue. Once both of them are shined through your finger for example, 

the absorption is measure with a photodiode. And depending on the amount of oxygen you 

have in your blood the ratio between the absorbed red light and IR led will be different. 
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From this ratio it is possible to “easily” calculate your oxygen level in your hemoglobin (see 

figure 1).   

 

Figure 1 Hemogoblin light absorption graph 

Really good explanation on the theory behind the pulse oximeter can be found here: 

https://www.howequipmentworks.com/pulse_oximeter/ 

It lacks details to implement the driver for MAX30100. But should give you a really good 

understanding about how in general these sensors operate. 

What MAX30100 does and doesn’t do? 
Initially I thought that this sensor, MAX30100, will do everything for me. My false 

assumptions were that it will measure the pulse and the oxygen saturation levels 

automatically and put them in a register I can easily read through the I2C, similar to BMP280. 

And that can’t be further from truth, if you wanted. 

Even though, MAX30100 doesn’t do everything for you, it still does quite a bit to help with 

measuring the absorption between those two light frequencies. If you wanted to build your 

own sensor, it would definitely come out as a quite large circuit. Where you have to 

manually alternate between reading IR and RED led absorption, regulate the brightness 

manually of the LEDs with PWM, filter 50/60Hz noise out of the signals and more. 

All of these things I mentioned in previous paragraph are done automatically by MAX30100. 

You just configure the sensor and then let it run, and it will store it’s readings in a FIFO 

buffer. Only thing you have to do is then, go and read the FIFO data and make sense of it. 

Which, by the way, would be very similar if you created your own sensor. On that basis, this 

article should also help if you do use different sensor or make your own from scratch. 

https://www.howequipmentworks.com/pulse_oximeter/
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In short don’t assume MAX30100 will do everything for you, a lot of deciphering will still be 

up to you. 

Background information on MAX30100 
First thing we have to do, is to connect the sensor to our microcontroller and read its data. I 

won’t go in a lot of details; just some small notes and tips how it is done. Since I feel this is a 

rather simple process. 

First some important background about MAX30100: 

1. I2C address of MAX30100: 0x57 

2. Data is stored in a FIFO buffer. It can store up to 16 measurements, where each 

sample is size of 4 bytes. First two bytes are for IR measurement and last two bytes 

are for RED measurement. 

3. FIFO buffer can’t be read consequently with I2C, since the FIFO points to the same 

address. You have to finish transaction for FIFO output address to contain the next 

values. 

4. MAX30100 has built in 50/60Hz filter 

5. If you want to just detect pulse, only IR is required 

6. For oxygen saturation you’ll need to enable both IR and RED LEDs 

7. By changing sampling rate and pulse width of the LEDs you also change the ADC 

resolution. It is important to note that sample rate and pulse width are directly 

linked to each other. See datasheet page 19 table 8 and table 9 or see figure 2. Don’t 

just configure them randomly. 

 

Figure 2 Sample Rate vs. Pulse width configuration table 

To start reading the data from MAX30100 you only have to do two things: 

1. Set the mode, I  suggest in the beginning set it only to heart rate mode 

2. Set the current for IR led 
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This will enable us to measure heart rate, once we are done with filtering. You can check 

how did I do it, by looking at three functions in my library: setMode(),setLEDCurrents() and 

readFIFO() 

Reading IR data 
Once you have managed to set up the MAX30100 for HR mode and read the raw IR data it 

should look something like in figure 3, once plotted: 

 

Figure 3 RAW IR data, with visible oscillations 

DC Removal 
There are two things you should notice in the graph (figure 3): 

1. The graph is oscillating slightly 

2. It has a DC offset of 50 000 units 

To properly be able to read the heart rate and SaO2 we need to remove the DC signal and 

leave only the AC part. 

It is actually very simple and can be done using these two equations: 

 ( )   ( )      (   ) 

 ( )   ( )   (   ) 

y(t):  is the output of the filter 

x(t):  current input/value 

w(t):   intermediate value, acts like the history of the DC value 

α:   is the response constant of the filter 

  If α = 1 then everything passes through 

  If α = 0 then nothing passes through 

  for DC removal you want the α as rather close to 1. I’ll be using α = 0.95 
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If you want to read more about DC removal, here is a good tutorial and much more detailed 

description of  how it functions: http://sam-koblenski.blogspot.co.uk/2015/11/everyday-

dsp-for-programmers-dc-and.html 

Here is the filter implemented in a code: 

struct fifo_t { 

  uint16_t rawIR; 

  uint16_t rawRed; 

}; 

dcFilter_t MAX30100::dcRemoval(float x, float prev_w, float alpha) 

{ 

  dcFilter_t filtered; 

  filtered.w = x + alpha * prev_w; 

  filtered.result = filtered.w - prev_w; 

 

  return filtered; 

} 

Once, we pass the signal through the DC removal filter, we should get a signal similar to the 

one in figure 4: 

 

Figure 4 IR signal passed through DC Removal filter 

As you can see in figure 4, we are now left with only the AC part of the signal, and it is 

oscillating around 0 DC value instead of 50 000.  

Mean Median Filter 
Now that we have DC filtered our signal, to further improve the ability to detect pulses we 

have to take the differential of the signal. Our pulse is where in the data we have suddenly 

the largest change in value.  

http://sam-koblenski.blogspot.co.uk/2015/11/everyday-dsp-for-programmers-dc-and.html
http://sam-koblenski.blogspot.co.uk/2015/11/everyday-dsp-for-programmers-dc-and.html
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However, I’ve decided to implement mean median filter instead of just taking the difference 

to further clean up the signal. This will give us the value change from the average, as the 

name implies. Here is my simple implementation of such filter: 

struct meanDiffFilter_t 

{ 

  float values[MEAN_FILTER_SIZE]; 

  byte index; 

  float sum; 

  byte count; 

}; 
 

float MAX30100::meanDiff(float M, meanDiffFilter_t* filterValues) 

{ 

  float avg = 0; 

 

  filterValues->sum -= filterValues->values[filterValues->index]; 

  filterValues->values[filterValues->index] = M; 

  filterValues->sum += filterValues->values[filterValues->index]; 

 

  filterValues->index++; 

  filterValues->index = filterValues->index % MEAN_FILTER_SIZE; 

 

  if(filterValues->count < MEAN_FILTER_SIZE) 

    filterValues->count++; 

 

  avg = filterValues->sum / filterValues->count; 

  return avg - M; 

} 

 

After we pass the DC filtered signal through the mean difference filter we get a familiar 

signal which reassembles a cardiogram (see figure 5) 

 

 

Figure 5 Mean Difference filtered IR signal 
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The really tall peaks are my heart beats. From this data it should already be quite easy to 

extrapolate my heartbeat, however if you look closely to the wave form, there are some 

higher level harmonies in the data. They are especially visible at the bottom part of the 

signal. We can filter them out easily if we pass the signal through a low pass filter or band 

pass filter. 

Butterworth filter 
To remove the higher level harmonies I shall be using Butterworth filter in low pass filter 

configuration. Technically it is a band pass filter. And also, any low pass filter would do just 

fine. It’s just relatively easy to work with Butterworth. There is a good online tool for 

generating Butterworth filter constants for your desired frequencies: 

http://www.schwietering.com/jayduino/filtuino/ 

So to implement this filter we have to establish two variables: sampling rate (FS) and cut-off 

frequency (FC ). 

Technically the fastest sampling rate available for MAX30100 is 1kHz, nonetheless the 

configuration I’ve chosen is with long pulse width, which allows the sampling rate to be only 

100Hz. So from this we can extrapolate that our sampling rate is 100Hz. 

Next we need to choose the cut-off frequency. Since we are measuring heart rate, as far as I 

know, 220 BPM is dangerously high heart rate but still achievable in certain cases. So I’ve 

chosen that to be our maximum frequency we have to pass through. 

Our fastest frequency we would require to let through can be calculated like so: 

       

  
        

If we assume we want to measure as low as 50 BPM we can apply the same calculations: 

      

  
         

 

It is very important to remember that Butterworth filter work on a normalised frequency 

   
  
  

 

So if your sampling rate is not spot-on 100Hz, Butterworth filter will start to cut-off different 

frequencies. In figure 6 you can see how quickly one loop finishes in my current 

implementation. 

http://www.schwietering.com/jayduino/filtuino/
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Figure 6 Diagram showing how quickly one loop finishes while reading and filtering MAX30100 data. Note that 
output pin is flipped every time a loop finishes. Actual execution speed is 75Hz 

 

As you can see in the figure 6 our sampling rate is about 75Hz. Let’s assume we actually 

implemented our Butterworth filter with FS = 100Hz and FC = 4Hz.  

If we apply the normalisation, at our real FS = 75Hz, our cut-off frequency would be FC = 3Hz 

And because of that we have a problem, our cut-off frequency is lower than our intended 

3.66Hz. That means we could only measure up to 180BPM instead of our desired 220BPM. 

Nonetheless, if the update speed is even lower, we would cut-off even more frequencies we 

actually want to keep. 

To fix this issue, we have two options available, either have a precise sampling rate or 

increase the cut-off frequency. Effectively increasing available sampling rate error margin 

and decreasing a bit the quality of the filtered signal. 

I adopted the second option and chose a new FC value. 

         

        

That would give us ratio of: 
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Assuming 220BPM or that is 3.66Hz is our target frequency. Butterworth filter would now 

still let through desired frequencies with as low as a sample rate of: 

      

   
        

 

In our real world example of FS = 75Hz it would give us actual FC = 7.5Hz. 

I believe it is good enough for our filtering needs, because we don’t need to be ultra-precise 

about filtering the signal; just enough to clear it up a bit and improve the signal for detecting 

peaks. 

Taking into account our FS = 100Hz and FC = 10Hz, we get the following code for Butterworth 

filter: 

struct butterworthFilter_t 

{ 

  float v[2]; 

  float result; 

}; 

void MAX30100::lowPassButterworthFilter( float x, butterworthFilter_t 

* filterResult ) 

{   

  filterResult->v[0] = filterResult->v[1]; 

 

  //Fs = 100Hz and Fc = 10Hz 

  filterResult->v[1] = (2.452372752527856026e-1 * x) + 

(0.50952544949442879485 * filterResult->v[0]); 

 

  //Fs = 100Hz and Fc = 4Hz 

  //filterResult->v[1] = (1.367287359973195227e-1 * x) + 

(0.72654252800536101020 * filterResult->v[0]); //Very precise 

butterworth filter  

 

  filterResult->result = filterResult->v[0] + filterResult->v[1]; 

} 

 

Once we pass the cardiogram looking signal, we get a much smoother signal out (see figure 

7) 
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Figure 7 Butterworth filtered signal with Fs = 100Hz and Fc = 10Hz. Real sampling rate Fs = 75Hz, which gives Fc 
= 7.5Hz 

And that is all we have to do for our IR output. At this stage it should be pretty clear where 

the pulses are, and as a matter of fact it generates a nice cardiogram. 

Beat Detection 
Now that we have a relatively clean signal from our MAX30100 we can start calculating the 

heart rate. I’ve decided to implement a very simple state machine. By no means is my design 

error free or industry ready. It isn’t, and can easily miss-detect pulses or not detect them at 

all, but it is good as proof of concept. 

Idea for the state machine is very simple. Once a threshold is reached, follow the curve. As 

soon as one or more times the signal starts to fall, save a timestamp. Once you have two 

timestamps, the difference between them is our measured delay between two beats. From 

this we can calculate the BPM. 

Arduino has a nice function called millis(), which gives you a timestamp in milliseconds. If we 

get two timestamps we can calculate the heart rate using this equation: 

     
     

                                              
 

On top of that because we are calculating in such a way BPM, I’ve decided to also implement 

a moving average filter on the BPM results. Just to give a more accurate measurement of the 

heart rate. 
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Figure 8 State machine diagram for detecting peaks 

Finally here is the code which detects and measures pulse 

bool MAX30100::detectPulse(float sensor_value) 

{ 

  static float prev_sensor_value = 0; 

  static uint8_t values_went_down = 0; 

  static uint32_t currentBeat = 0; 

  static uint32_t lastBeat = 0; 

 

  if(sensor_value > PULSE_MAX_THRESHOLD) 

  { 

    currentPulseDetectorState = PULSE_IDLE; 

    prev_sensor_value = 0; 

    lastBeat = 0; 

    currentBeat = 0; 

    values_went_down = 0; 

    lastBeatThreshold = 0; 

    return false; 

  } 

 

  switch(currentPulseDetectorState) 

  { 

    case PULSE_IDLE: 

      if(sensor_value >= PULSE_MIN_THRESHOLD) { 

        currentPulseDetectorState = PULSE_TRACE_UP; 

        values_went_down = 0; 

      } 

      break; 

 

    case PULSE_TRACE_UP: 

      if(sensor_value > prev_sensor_value) 

      { 

        currentBeat = millis(); 
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        lastBeatThreshold = sensor_value; 

      } 

      else 

      { 

 

        if(debug == true)  

        { 

          Serial.print("Peak reached: "); 

          Serial.print(sensor_value); 

          Serial.print(" "); 

          Serial.println(prev_sensor_value); 

        } 

 

        uint32_t beatDuration = currentBeat - lastBeat; 

        lastBeat = currentBeat; 

 

        float rawBPM = 0; 

        if(beatDuration > 0) 

          rawBPM = 60000.0 / (float)beatDuration; 

        if(debug == true)  

          Serial.println(rawBPM); 

 

        //This method sometimes glitches, it's better to go through 

whole moving average everytime 

        //IT's a neat idea to optimize the amount of work for moving 

avg. but while placing, removing finger it can screw up 

        //valuesBPMSum -= valuesBPM[bpmIndex]; 

        //valuesBPM[bpmIndex] = rawBPM; 

        //valuesBPMSum += valuesBPM[bpmIndex]; 

 

        valuesBPM[bpmIndex] = rawBPM; 

        valuesBPMSum = 0; 

        for(int i=0; i<PULSE_BPM_SAMPLE_SIZE; i++) 

        { 

          valuesBPMSum += valuesBPM[i]; 

        } 

 

        if(debug == true)  

        { 

          Serial.print("CurrentMoving Avg: "); 

          for(int i=0; i<PULSE_BPM_SAMPLE_SIZE; i++) 

          { 

            Serial.print(valuesBPM[i]); 

            Serial.print(" "); 

          } 

   

          Serial.println(" "); 

        } 

 

        bpmIndex++; 

        bpmIndex = bpmIndex % PULSE_BPM_SAMPLE_SIZE; 

 

        if(valuesBPMCount < PULSE_BPM_SAMPLE_SIZE) 

          valuesBPMCount++; 

 

        currentBPM = valuesBPMSum / valuesBPMCount; 

        if(debug == true)  

        { 

          Serial.print("AVg. BPM: "); 

          Serial.println(currentBPM); 

        } 



© Raivis Strogonovs  08.03.2017 

13 
 

 

 

        currentPulseDetectorState = PULSE_TRACE_DOWN; 

 

        return true; 

      } 

      break; 

 

    case PULSE_TRACE_DOWN: 

      if(sensor_value < prev_sensor_value) 

      { 

        values_went_down++; 

      } 

 

 

      if(sensor_value < PULSE_MIN_THRESHOLD) 

      { 

        currentPulseDetectorState = PULSE_IDLE; 

      } 

      break; 

  } 

 

  prev_sensor_value = sensor_value; 

  return false; 

} 

 

At this stage we have applied multiple filters to our signal. Moreover we also have detected 

the pulse and measured the heart rate. However, as previously mentioned, this state 

machine can still be greatly improved and should not be used in a real product. 

Measuring SpO2  
As mentioned in the introduction, oxygen concentration can be measured by calculating the 

ratio between absorbed light from IR LED and Red LED. In this section I will explore how it is 

theoretically done, but due to some limitation the sensor won’t be calibrated properly. 

Unfortunately for that you need proper empirical data to create a lookup table. 

Balancing IR and Red Current 
First of all, we have to switch the MAX30100 mode to SaO2 + HR. That can be done by 

sending 0x03 to MODE config register. That will enable both LEDs and MAX30100 will start 

filling the FIFO buffer with readings from both light spectrums.  

Also, RED readings should be passed through the same DC removal filter as IR readings. But 

it is not necessary to pass it through mean average filter and Butterworth filter, since we are 

not using RED light to detect pulses. 

If you just enabled both LEDs with maximum output current of 50ma, you’ll quickly realize 

that readings from Red LED will be extremely saturated. Also to be able to measure the 

ratios between our two readings, on base level their DC levels should be nearly identical (see 

figure 9 and figure 10). 
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Figure 9 Mismatched DC levels. Difference is approximately about 380 000 (DC units). IR led has been set to 
50ma and RED led to 50ma 

 

Figure 10 More closely matched DC levels. Difference now has been reduced to 42 000 (DC units). IR led has 
been set to 50ma and RED led to 27.1ma 

Idea is very simple: 

1. Check the difference between RED and IR DC readings 

2. If IRED > IIR then decrease IRED current 

If IRED < IIR then increase IRED current 

It is important to note, that IRED shouldn’t be changed instantly, but once in a while only if 

the difference is above certain threshold, which can only be determined by experimentation. 

Here is the code I’ve implemented to balance IIR and IRED: 
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void MAX30100::balanceIntesities( float redLedDC, float IRLedDC ) 

{ 

   

  if( millis() - lastREDLedCurrentCheck >= 

RED_LED_CURRENT_ADJUSTMENT_MS)  

  { 

    //Serial.println( redLedDC - IRLedDC ); 

    if( IRLedDC - redLedDC > MAGIC_ACCEPTABLE_INTENSITY_DIFF && 

redLEDCurrent < MAX30100_LED_CURRENT_50MA)  

    { 

      redLEDCurrent++; 

      setLEDCurrents( redLEDCurrent, IrLedCurrent ); 

      if(debug == true)  

        Serial.println("RED LED Current +"); 

    }  

    else if(redLedDC - IRLedDC > MAGIC_ACCEPTABLE_INTENSITY_DIFF && 

redLEDCurrent > 0)  

    { 

      redLEDCurrent--; 

      setLEDCurrents( redLEDCurrent, IrLedCurrent ); 

      if(debug == true)  

        Serial.println("RED LED Current -"); 

    } 

 

    lastREDLedCurrentCheck = millis(); 

  } 

} 

As I said before, you have to choose a good magic value for acceptable difference between 

those two readings at base state. If you choose the magic value too little, it will result in a lot 

of oscillation (see figure 11) 

 

Figure 11 Oscillations invoked due to too little magic value. Magic difference in this example is set to 50 000 

After some little experimentation I came to a good magic value of 65 000. This in my use 

case completely eliminated oscillations. And only in some rare cases the algorithm adjusted 

the current while being active for a while. Nonetheless, it adjusts wildly inaccurate intensity 

to match the IIR immediately (see figure 12) 
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Figure 12 Good magic value of 65 000. Immediately balances out and stays stable 

That is all we have to do before we can get into calculating the SpO2 value. 

A little bit of SpO2 theory 
In short SpO2 is defined as the ratio of the oxygenated Hemoglobin level over the total 

Hemoglobin level. 

      
    

        
 

Our bodies’ tissue absorbs different amounts of light depending on the blood oxygenation 

level. However it is important to note, that the characteristic is non-linear. 

As mentioned before two different wavelengths are used IR (950nm) and RED (650nm). 

These two wavelengths are emitted towards your finger, earlobe etc. in alternating fashion. 

One is turned on, measurement is taken and then it is turned off. This repeats for the other 

spectrum. Basically, both of them are not measured simultaneously. 

The ratio R between these two wavelengths is defined with the following equations: 

   
(               )

(             )
 

Or it can also be expressed like this: 

   
   (   )     
   (   )     

 

IAC is the light intensity where only the AC is present. And λ1 is for 650nm wavelength and λ2 

is for 950nm wavelength of light. 

Quoting from TI article about pulse oximeter 
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“Once the DC levels match, then the SpO2 is calculated by dividing the logs of the RMS 

values” 

As you know, we have already balanced our DC levels, and only thing left to do is to calculate 

RMS for both IIR and IRED 

If you don’t know, calculating basic RMS value is extremely simple; you just have to take the 

sum of squares of your signal, average them and then take square root of the average. It 

won’t be true RMS, but more than enough for our application.  

See this article for basic explanation: http://practicalphysics.org/explaining-rms-voltage-and-

current.html 

I also want to stress out, that RMS values how to be calculated for the whole signal, not only 

when there is a pulse. And it is advised to reset it once in a while; otherwise it will hold 

whole historical garbage data. In my final implementation I reset RMS every 4 heart beats. 

Now that we have calculated the RMS values for both of our wavelengths, and also 

calculated ratio R value, only thing left to do is to calculate the actual SpO2 value. 

This is where it gets very interesting. To be able to have precise measurements of the 

oxygen saturation, you’ll need to calibrate the sensor. There is no formula which fits them 

all. 

Nonetheless a standard model of computing SpO2, which is referenced basically in all text 

books, is as follows: 

              

As I said before, the relationship is non-linear. But standard model is clearly suggesting a 

linear relationship which is not true. See figure 13 for an excellent comparison between 

empirical and theoretical R to SpO2 

http://practicalphysics.org/explaining-rms-voltage-and-current.html
http://practicalphysics.org/explaining-rms-voltage-and-current.html
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Figure 13 Empirical and Theoretical R to SaO2. Source: http://www.ti.com/lit/an/slaa274b/slaa274b.pdf 

 

Also you should notice that even with empirical calibration, once the oxygen saturation 

drops below 80% you can safely assume a linear relationship.  

Here is where I had a problem. I don’t really have a way of calibrating MAX30100 sensor. 

Neither have I a calibrated pulse oximeter for reference or other means of determining my 

real SpO2 

Once I implemented all these calculations in practice, I got my RMS ratios between: 

0.84 – 0.86 

According to standard model it would yield SpO2 between 88.5% and 89%. Or according to 

the TI empirical curve: ~90%. 

It still feels rather low, since I’m expecting at least 94% for a healthy human being. Unless 

I’m being very unhealthy at the time of measuring my oxygen saturation. Also, I live next to 

the sea, maybe about 3m above sea level. So my altitude shouldn’t be a factor for low 

oxygen levels. 

My decision, not being the most scientific, was to just assume I have oxygen levels of 94% 

and I adjusted the standard model accordingly. 

              

http://www.ti.com/lit/an/slaa274b/slaa274b.pdf
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I really have to stress out! This is not a scientific or proper way of determining SpO2. You 

must have a proper calibration in place; this is merely an estimate (and extremely poor at 

that)! 

Nonetheless, here are the final results after implementing everything I have described in this 

article (see figure 14). 

 

Figure 14 Reading from final implementation of the MAX30100 driver 

In figure 14, you can see that my pulse rate is about 68.81 BPM and O2 concentration around 

94.06%. I’m absolutely certain about the accuracy of heart rate measurements, since I was 

able to cross-check it multiple times with Omron blood pressure measuring device, which 

also measures BPM. At this particular instance, Omron measured my BPM to be 68. 

Conclusion 
It was not as simple as I first anticipated to measure heart rate and oxygen saturation in your 

blood. But with persistence I was able to achieve good enough understanding on the DSP 

involved and the theory behind measuring SpO2 to implement it from scratch. Not only all of 

this is applicable to MAX30100 exclusively, but similar techniques and calculations should be 

done on either your own self-made sensor or a sensor manufactured by a different company 

than Maxim. MAX30100 gives just the convenience of integrating a rather complicated 

analog circuit in extremely small package.  However, from quick tests, I must say that 

measuring heart rate from wrist is extremely difficult with this sensor. Essentially it is 

impossible with the current algorithm for detecting peaks. Also it is important to remember 

that in the article when measuring oxygen saturation I have not properly calibrated the 

sensor, merely adjusted standard model to fit what I felt is right. It is highly advisable that if 

you do use this sensor for measuring SpO2, you must calibrate it properly. 
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