
© Raivis Strogonovs 08.03.2017

1

Implementing pulse oximeter using
MAX30100

For my smart watch project I decided to experiment with sensors for reading pulse. Looking

around I stumbled upon a sensor made by Maxim – MAX30100. For my surprise once I got

my development board and delved into the sensor’s datasheet I discovered it’s not as simple

as just wiring up the sensor to a microcontroller and reading the data. A lot of work you have

to do yourself. In this tutorial, I’ll try to explain what I’ve learned about pulse oximeter and

how to make sense of their data.

Introduction
In this tutorial I’ll briefly explain how a pulse oximeter works and how to make sense of the

data coming from MAX30100. This article will be structured in a way where each consecutive

step will be explained with why such filtering is applied and how it was calculated. Mainly

the implementation consists of two parts: reading the pulse with IR LED only and calculating

SaO2 using both RED and IR LEDs.

By the end of the article you should be able to understand the various stages the signal goes

through. These methods should be applicable to any sensor even the ones you make

yourself or made by other manufacturers.

What is pulse oximeter?
A pulse oximeter is basically a device which can measure your pulse and oxygen saturation in

your blood. Usually this sensor consists of two LEDs emitting light: one in Red spectrum

(650nm) and the other one in Infrared (950nm). This sensor is placed on your finger or

earlobe, essentially anywhere where the skin is not too thick so both light frequencies can

easily penetrate the tissue. Once both of them are shined through your finger for example,

the absorption is measure with a photodiode. And depending on the amount of oxygen you

have in your blood the ratio between the absorbed red light and IR led will be different.

© Raivis Strogonovs 08.03.2017

2

From this ratio it is possible to “easily” calculate your oxygen level in your hemoglobin (see

figure 1).

Figure 1 Hemogoblin light absorption graph

Really good explanation on the theory behind the pulse oximeter can be found here:

https://www.howequipmentworks.com/pulse_oximeter/

It lacks details to implement the driver for MAX30100. But should give you a really good

understanding about how in general these sensors operate.

What MAX30100 does and doesn’t do?
Initially I thought that this sensor, MAX30100, will do everything for me. My false

assumptions were that it will measure the pulse and the oxygen saturation levels

automatically and put them in a register I can easily read through the I2C, similar to BMP280.

And that can’t be further from truth, if you wanted.

Even though, MAX30100 doesn’t do everything for you, it still does quite a bit to help with

measuring the absorption between those two light frequencies. If you wanted to build your

own sensor, it would definitely come out as a quite large circuit. Where you have to

manually alternate between reading IR and RED led absorption, regulate the brightness

manually of the LEDs with PWM, filter 50/60Hz noise out of the signals and more.

All of these things I mentioned in previous paragraph are done automatically by MAX30100.

You just configure the sensor and then let it run, and it will store it’s readings in a FIFO

buffer. Only thing you have to do is then, go and read the FIFO data and make sense of it.

Which, by the way, would be very similar if you created your own sensor. On that basis, this

article should also help if you do use different sensor or make your own from scratch.

https://www.howequipmentworks.com/pulse_oximeter/

© Raivis Strogonovs 08.03.2017

3

In short don’t assume MAX30100 will do everything for you, a lot of deciphering will still be

up to you.

Background information on MAX30100
First thing we have to do, is to connect the sensor to our microcontroller and read its data. I

won’t go in a lot of details; just some small notes and tips how it is done. Since I feel this is a

rather simple process.

First some important background about MAX30100:

1. I2C address of MAX30100: 0x57

2. Data is stored in a FIFO buffer. It can store up to 16 measurements, where each

sample is size of 4 bytes. First two bytes are for IR measurement and last two bytes

are for RED measurement.

3. FIFO buffer can’t be read consequently with I2C, since the FIFO points to the same

address. You have to finish transaction for FIFO output address to contain the next

values.

4. MAX30100 has built in 50/60Hz filter

5. If you want to just detect pulse, only IR is required

6. For oxygen saturation you’ll need to enable both IR and RED LEDs

7. By changing sampling rate and pulse width of the LEDs you also change the ADC

resolution. It is important to note that sample rate and pulse width are directly

linked to each other. See datasheet page 19 table 8 and table 9 or see figure 2. Don’t

just configure them randomly.

Figure 2 Sample Rate vs. Pulse width configuration table

To start reading the data from MAX30100 you only have to do two things:

1. Set the mode, I suggest in the beginning set it only to heart rate mode

2. Set the current for IR led

© Raivis Strogonovs 08.03.2017

4

This will enable us to measure heart rate, once we are done with filtering. You can check

how did I do it, by looking at three functions in my library: setMode(),setLEDCurrents() and

readFIFO()

Reading IR data
Once you have managed to set up the MAX30100 for HR mode and read the raw IR data it

should look something like in figure 3, once plotted:

Figure 3 RAW IR data, with visible oscillations

DC Removal
There are two things you should notice in the graph (figure 3):

1. The graph is oscillating slightly

2. It has a DC offset of 50 000 units

To properly be able to read the heart rate and SaO2 we need to remove the DC signal and

leave only the AC part.

It is actually very simple and can be done using these two equations:

 () () ()

 () () ()

y(t): is the output of the filter

x(t): current input/value

w(t): intermediate value, acts like the history of the DC value

α: is the response constant of the filter

 If α = 1 then everything passes through

 If α = 0 then nothing passes through

 for DC removal you want the α as rather close to 1. I’ll be using α = 0.95

© Raivis Strogonovs 08.03.2017

5

If you want to read more about DC removal, here is a good tutorial and much more detailed

description of how it functions: http://sam-koblenski.blogspot.co.uk/2015/11/everyday-

dsp-for-programmers-dc-and.html

Here is the filter implemented in a code:

struct fifo_t {

 uint16_t rawIR;

 uint16_t rawRed;

};

dcFilter_t MAX30100::dcRemoval(float x, float prev_w, float alpha)

{

 dcFilter_t filtered;

 filtered.w = x + alpha * prev_w;

 filtered.result = filtered.w - prev_w;

 return filtered;

}

Once, we pass the signal through the DC removal filter, we should get a signal similar to the

one in figure 4:

Figure 4 IR signal passed through DC Removal filter

As you can see in figure 4, we are now left with only the AC part of the signal, and it is

oscillating around 0 DC value instead of 50 000.

Mean Median Filter
Now that we have DC filtered our signal, to further improve the ability to detect pulses we

have to take the differential of the signal. Our pulse is where in the data we have suddenly

the largest change in value.

http://sam-koblenski.blogspot.co.uk/2015/11/everyday-dsp-for-programmers-dc-and.html
http://sam-koblenski.blogspot.co.uk/2015/11/everyday-dsp-for-programmers-dc-and.html

© Raivis Strogonovs 08.03.2017

6

However, I’ve decided to implement mean median filter instead of just taking the difference

to further clean up the signal. This will give us the value change from the average, as the

name implies. Here is my simple implementation of such filter:

struct meanDiffFilter_t

{

 float values[MEAN_FILTER_SIZE];

 byte index;

 float sum;

 byte count;

};

float MAX30100::meanDiff(float M, meanDiffFilter_t* filterValues)

{

 float avg = 0;

 filterValues->sum -= filterValues->values[filterValues->index];

 filterValues->values[filterValues->index] = M;

 filterValues->sum += filterValues->values[filterValues->index];

 filterValues->index++;

 filterValues->index = filterValues->index % MEAN_FILTER_SIZE;

 if(filterValues->count < MEAN_FILTER_SIZE)

 filterValues->count++;

 avg = filterValues->sum / filterValues->count;

 return avg - M;

}

After we pass the DC filtered signal through the mean difference filter we get a familiar

signal which reassembles a cardiogram (see figure 5)

Figure 5 Mean Difference filtered IR signal

© Raivis Strogonovs 08.03.2017

7

The really tall peaks are my heart beats. From this data it should already be quite easy to

extrapolate my heartbeat, however if you look closely to the wave form, there are some

higher level harmonies in the data. They are especially visible at the bottom part of the

signal. We can filter them out easily if we pass the signal through a low pass filter or band

pass filter.

Butterworth filter
To remove the higher level harmonies I shall be using Butterworth filter in low pass filter

configuration. Technically it is a band pass filter. And also, any low pass filter would do just

fine. It’s just relatively easy to work with Butterworth. There is a good online tool for

generating Butterworth filter constants for your desired frequencies:

http://www.schwietering.com/jayduino/filtuino/

So to implement this filter we have to establish two variables: sampling rate (FS) and cut-off

frequency (FC).

Technically the fastest sampling rate available for MAX30100 is 1kHz, nonetheless the

configuration I’ve chosen is with long pulse width, which allows the sampling rate to be only

100Hz. So from this we can extrapolate that our sampling rate is 100Hz.

Next we need to choose the cut-off frequency. Since we are measuring heart rate, as far as I

know, 220 BPM is dangerously high heart rate but still achievable in certain cases. So I’ve

chosen that to be our maximum frequency we have to pass through.

Our fastest frequency we would require to let through can be calculated like so:

If we assume we want to measure as low as 50 BPM we can apply the same calculations:

It is very important to remember that Butterworth filter work on a normalised frequency

So if your sampling rate is not spot-on 100Hz, Butterworth filter will start to cut-off different

frequencies. In figure 6 you can see how quickly one loop finishes in my current

implementation.

http://www.schwietering.com/jayduino/filtuino/

© Raivis Strogonovs 08.03.2017

8

Figure 6 Diagram showing how quickly one loop finishes while reading and filtering MAX30100 data. Note that
output pin is flipped every time a loop finishes. Actual execution speed is 75Hz

As you can see in the figure 6 our sampling rate is about 75Hz. Let’s assume we actually

implemented our Butterworth filter with FS = 100Hz and FC = 4Hz.

If we apply the normalisation, at our real FS = 75Hz, our cut-off frequency would be FC = 3Hz

And because of that we have a problem, our cut-off frequency is lower than our intended

3.66Hz. That means we could only measure up to 180BPM instead of our desired 220BPM.

Nonetheless, if the update speed is even lower, we would cut-off even more frequencies we

actually want to keep.

To fix this issue, we have two options available, either have a precise sampling rate or

increase the cut-off frequency. Effectively increasing available sampling rate error margin

and decreasing a bit the quality of the filtered signal.

I adopted the second option and chose a new FC value.

That would give us ratio of:

© Raivis Strogonovs 08.03.2017

9

Assuming 220BPM or that is 3.66Hz is our target frequency. Butterworth filter would now

still let through desired frequencies with as low as a sample rate of:

In our real world example of FS = 75Hz it would give us actual FC = 7.5Hz.

I believe it is good enough for our filtering needs, because we don’t need to be ultra-precise

about filtering the signal; just enough to clear it up a bit and improve the signal for detecting

peaks.

Taking into account our FS = 100Hz and FC = 10Hz, we get the following code for Butterworth

filter:

struct butterworthFilter_t

{

 float v[2];

 float result;

};

void MAX30100::lowPassButterworthFilter(float x, butterworthFilter_t

* filterResult)

{

 filterResult->v[0] = filterResult->v[1];

 //Fs = 100Hz and Fc = 10Hz

 filterResult->v[1] = (2.452372752527856026e-1 * x) +

(0.50952544949442879485 * filterResult->v[0]);

 //Fs = 100Hz and Fc = 4Hz

 //filterResult->v[1] = (1.367287359973195227e-1 * x) +

(0.72654252800536101020 * filterResult->v[0]); //Very precise

butterworth filter

 filterResult->result = filterResult->v[0] + filterResult->v[1];

}

Once we pass the cardiogram looking signal, we get a much smoother signal out (see figure

7)

© Raivis Strogonovs 08.03.2017

10

Figure 7 Butterworth filtered signal with Fs = 100Hz and Fc = 10Hz. Real sampling rate Fs = 75Hz, which gives Fc
= 7.5Hz

And that is all we have to do for our IR output. At this stage it should be pretty clear where

the pulses are, and as a matter of fact it generates a nice cardiogram.

Beat Detection
Now that we have a relatively clean signal from our MAX30100 we can start calculating the

heart rate. I’ve decided to implement a very simple state machine. By no means is my design

error free or industry ready. It isn’t, and can easily miss-detect pulses or not detect them at

all, but it is good as proof of concept.

Idea for the state machine is very simple. Once a threshold is reached, follow the curve. As

soon as one or more times the signal starts to fall, save a timestamp. Once you have two

timestamps, the difference between them is our measured delay between two beats. From

this we can calculate the BPM.

Arduino has a nice function called millis(), which gives you a timestamp in milliseconds. If we

get two timestamps we can calculate the heart rate using this equation:

On top of that because we are calculating in such a way BPM, I’ve decided to also implement

a moving average filter on the BPM results. Just to give a more accurate measurement of the

heart rate.

© Raivis Strogonovs 08.03.2017

11

Figure 8 State machine diagram for detecting peaks

Finally here is the code which detects and measures pulse

bool MAX30100::detectPulse(float sensor_value)

{

 static float prev_sensor_value = 0;

 static uint8_t values_went_down = 0;

 static uint32_t currentBeat = 0;

 static uint32_t lastBeat = 0;

 if(sensor_value > PULSE_MAX_THRESHOLD)

 {

 currentPulseDetectorState = PULSE_IDLE;

 prev_sensor_value = 0;

 lastBeat = 0;

 currentBeat = 0;

 values_went_down = 0;

 lastBeatThreshold = 0;

 return false;

 }

 switch(currentPulseDetectorState)

 {

 case PULSE_IDLE:

 if(sensor_value >= PULSE_MIN_THRESHOLD) {

 currentPulseDetectorState = PULSE_TRACE_UP;

 values_went_down = 0;

 }

 break;

 case PULSE_TRACE_UP:

 if(sensor_value > prev_sensor_value)

 {

 currentBeat = millis();

© Raivis Strogonovs 08.03.2017

12

 lastBeatThreshold = sensor_value;

 }

 else

 {

 if(debug == true)

 {

 Serial.print("Peak reached: ");

 Serial.print(sensor_value);

 Serial.print(" ");

 Serial.println(prev_sensor_value);

 }

 uint32_t beatDuration = currentBeat - lastBeat;

 lastBeat = currentBeat;

 float rawBPM = 0;

 if(beatDuration > 0)

 rawBPM = 60000.0 / (float)beatDuration;

 if(debug == true)

 Serial.println(rawBPM);

 //This method sometimes glitches, it's better to go through

whole moving average everytime

 //IT's a neat idea to optimize the amount of work for moving

avg. but while placing, removing finger it can screw up

 //valuesBPMSum -= valuesBPM[bpmIndex];

 //valuesBPM[bpmIndex] = rawBPM;

 //valuesBPMSum += valuesBPM[bpmIndex];

 valuesBPM[bpmIndex] = rawBPM;

 valuesBPMSum = 0;

 for(int i=0; i<PULSE_BPM_SAMPLE_SIZE; i++)

 {

 valuesBPMSum += valuesBPM[i];

 }

 if(debug == true)

 {

 Serial.print("CurrentMoving Avg: ");

 for(int i=0; i<PULSE_BPM_SAMPLE_SIZE; i++)

 {

 Serial.print(valuesBPM[i]);

 Serial.print(" ");

 }

 Serial.println(" ");

 }

 bpmIndex++;

 bpmIndex = bpmIndex % PULSE_BPM_SAMPLE_SIZE;

 if(valuesBPMCount < PULSE_BPM_SAMPLE_SIZE)

 valuesBPMCount++;

 currentBPM = valuesBPMSum / valuesBPMCount;

 if(debug == true)

 {

 Serial.print("AVg. BPM: ");

 Serial.println(currentBPM);

 }

© Raivis Strogonovs 08.03.2017

13

 currentPulseDetectorState = PULSE_TRACE_DOWN;

 return true;

 }

 break;

 case PULSE_TRACE_DOWN:

 if(sensor_value < prev_sensor_value)

 {

 values_went_down++;

 }

 if(sensor_value < PULSE_MIN_THRESHOLD)

 {

 currentPulseDetectorState = PULSE_IDLE;

 }

 break;

 }

 prev_sensor_value = sensor_value;

 return false;

}

At this stage we have applied multiple filters to our signal. Moreover we also have detected

the pulse and measured the heart rate. However, as previously mentioned, this state

machine can still be greatly improved and should not be used in a real product.

Measuring SpO2
As mentioned in the introduction, oxygen concentration can be measured by calculating the

ratio between absorbed light from IR LED and Red LED. In this section I will explore how it is

theoretically done, but due to some limitation the sensor won’t be calibrated properly.

Unfortunately for that you need proper empirical data to create a lookup table.

Balancing IR and Red Current
First of all, we have to switch the MAX30100 mode to SaO2 + HR. That can be done by

sending 0x03 to MODE config register. That will enable both LEDs and MAX30100 will start

filling the FIFO buffer with readings from both light spectrums.

Also, RED readings should be passed through the same DC removal filter as IR readings. But

it is not necessary to pass it through mean average filter and Butterworth filter, since we are

not using RED light to detect pulses.

If you just enabled both LEDs with maximum output current of 50ma, you’ll quickly realize

that readings from Red LED will be extremely saturated. Also to be able to measure the

ratios between our two readings, on base level their DC levels should be nearly identical (see

figure 9 and figure 10).

© Raivis Strogonovs 08.03.2017

14

Figure 9 Mismatched DC levels. Difference is approximately about 380 000 (DC units). IR led has been set to
50ma and RED led to 50ma

Figure 10 More closely matched DC levels. Difference now has been reduced to 42 000 (DC units). IR led has
been set to 50ma and RED led to 27.1ma

Idea is very simple:

1. Check the difference between RED and IR DC readings

2. If IRED > IIR then decrease IRED current

If IRED < IIR then increase IRED current

It is important to note, that IRED shouldn’t be changed instantly, but once in a while only if

the difference is above certain threshold, which can only be determined by experimentation.

Here is the code I’ve implemented to balance IIR and IRED:

© Raivis Strogonovs 08.03.2017

15

void MAX30100::balanceIntesities(float redLedDC, float IRLedDC)

{

 if(millis() - lastREDLedCurrentCheck >=

RED_LED_CURRENT_ADJUSTMENT_MS)

 {

 //Serial.println(redLedDC - IRLedDC);

 if(IRLedDC - redLedDC > MAGIC_ACCEPTABLE_INTENSITY_DIFF &&

redLEDCurrent < MAX30100_LED_CURRENT_50MA)

 {

 redLEDCurrent++;

 setLEDCurrents(redLEDCurrent, IrLedCurrent);

 if(debug == true)

 Serial.println("RED LED Current +");

 }

 else if(redLedDC - IRLedDC > MAGIC_ACCEPTABLE_INTENSITY_DIFF &&

redLEDCurrent > 0)

 {

 redLEDCurrent--;

 setLEDCurrents(redLEDCurrent, IrLedCurrent);

 if(debug == true)

 Serial.println("RED LED Current -");

 }

 lastREDLedCurrentCheck = millis();

 }

}

As I said before, you have to choose a good magic value for acceptable difference between

those two readings at base state. If you choose the magic value too little, it will result in a lot

of oscillation (see figure 11)

Figure 11 Oscillations invoked due to too little magic value. Magic difference in this example is set to 50 000

After some little experimentation I came to a good magic value of 65 000. This in my use

case completely eliminated oscillations. And only in some rare cases the algorithm adjusted

the current while being active for a while. Nonetheless, it adjusts wildly inaccurate intensity

to match the IIR immediately (see figure 12)

© Raivis Strogonovs 08.03.2017

16

Figure 12 Good magic value of 65 000. Immediately balances out and stays stable

That is all we have to do before we can get into calculating the SpO2 value.

A little bit of SpO2 theory
In short SpO2 is defined as the ratio of the oxygenated Hemoglobin level over the total

Hemoglobin level.

Our bodies’ tissue absorbs different amounts of light depending on the blood oxygenation

level. However it is important to note, that the characteristic is non-linear.

As mentioned before two different wavelengths are used IR (950nm) and RED (650nm).

These two wavelengths are emitted towards your finger, earlobe etc. in alternating fashion.

One is turned on, measurement is taken and then it is turned off. This repeats for the other

spectrum. Basically, both of them are not measured simultaneously.

The ratio R between these two wavelengths is defined with the following equations:

()

()

Or it can also be expressed like this:

 ()
 ()

IAC is the light intensity where only the AC is present. And λ1 is for 650nm wavelength and λ2

is for 950nm wavelength of light.

Quoting from TI article about pulse oximeter

© Raivis Strogonovs 08.03.2017

17

“Once the DC levels match, then the SpO2 is calculated by dividing the logs of the RMS

values”

As you know, we have already balanced our DC levels, and only thing left to do is to calculate

RMS for both IIR and IRED

If you don’t know, calculating basic RMS value is extremely simple; you just have to take the

sum of squares of your signal, average them and then take square root of the average. It

won’t be true RMS, but more than enough for our application.

See this article for basic explanation: http://practicalphysics.org/explaining-rms-voltage-and-

current.html

I also want to stress out, that RMS values how to be calculated for the whole signal, not only

when there is a pulse. And it is advised to reset it once in a while; otherwise it will hold

whole historical garbage data. In my final implementation I reset RMS every 4 heart beats.

Now that we have calculated the RMS values for both of our wavelengths, and also

calculated ratio R value, only thing left to do is to calculate the actual SpO2 value.

This is where it gets very interesting. To be able to have precise measurements of the

oxygen saturation, you’ll need to calibrate the sensor. There is no formula which fits them

all.

Nonetheless a standard model of computing SpO2, which is referenced basically in all text

books, is as follows:

As I said before, the relationship is non-linear. But standard model is clearly suggesting a

linear relationship which is not true. See figure 13 for an excellent comparison between

empirical and theoretical R to SpO2

http://practicalphysics.org/explaining-rms-voltage-and-current.html
http://practicalphysics.org/explaining-rms-voltage-and-current.html

© Raivis Strogonovs 08.03.2017

18

Figure 13 Empirical and Theoretical R to SaO2. Source: http://www.ti.com/lit/an/slaa274b/slaa274b.pdf

Also you should notice that even with empirical calibration, once the oxygen saturation

drops below 80% you can safely assume a linear relationship.

Here is where I had a problem. I don’t really have a way of calibrating MAX30100 sensor.

Neither have I a calibrated pulse oximeter for reference or other means of determining my

real SpO2

Once I implemented all these calculations in practice, I got my RMS ratios between:

0.84 – 0.86

According to standard model it would yield SpO2 between 88.5% and 89%. Or according to

the TI empirical curve: ~90%.

It still feels rather low, since I’m expecting at least 94% for a healthy human being. Unless

I’m being very unhealthy at the time of measuring my oxygen saturation. Also, I live next to

the sea, maybe about 3m above sea level. So my altitude shouldn’t be a factor for low

oxygen levels.

My decision, not being the most scientific, was to just assume I have oxygen levels of 94%

and I adjusted the standard model accordingly.

http://www.ti.com/lit/an/slaa274b/slaa274b.pdf

© Raivis Strogonovs 08.03.2017

19

I really have to stress out! This is not a scientific or proper way of determining SpO2. You

must have a proper calibration in place; this is merely an estimate (and extremely poor at

that)!

Nonetheless, here are the final results after implementing everything I have described in this

article (see figure 14).

Figure 14 Reading from final implementation of the MAX30100 driver

In figure 14, you can see that my pulse rate is about 68.81 BPM and O2 concentration around

94.06%. I’m absolutely certain about the accuracy of heart rate measurements, since I was

able to cross-check it multiple times with Omron blood pressure measuring device, which

also measures BPM. At this particular instance, Omron measured my BPM to be 68.

Conclusion
It was not as simple as I first anticipated to measure heart rate and oxygen saturation in your

blood. But with persistence I was able to achieve good enough understanding on the DSP

involved and the theory behind measuring SpO2 to implement it from scratch. Not only all of

this is applicable to MAX30100 exclusively, but similar techniques and calculations should be

done on either your own self-made sensor or a sensor manufactured by a different company

than Maxim. MAX30100 gives just the convenience of integrating a rather complicated

analog circuit in extremely small package. However, from quick tests, I must say that

measuring heart rate from wrist is extremely difficult with this sensor. Essentially it is

impossible with the current algorithm for detecting peaks. Also it is important to remember

that in the article when measuring oxygen saturation I have not properly calibrated the

sensor, merely adjusted standard model to fit what I felt is right. It is highly advisable that if

you do use this sensor for measuring SpO2, you must calibrate it properly.

© Raivis Strogonovs 08.03.2017

20

References
ElectronicsTutorials. “Butterworth Filter Design.” ElectronicsTutorials. n.d.

http://www.electronics-tutorials.ws/filter/filter_8.html (accessed February 17,

2017).

Erken, Eray. How to Measure Heart Rate with MAX30100 Pulse Oximeter. 30 April 2016.

https://www.youtube.com/watch?v=36cELpNGJZYHow to Measure Heart Rate with

MAX30100 Pulse Oximeter (accessed December 1, 2016).

Intersecans, OXullo. Arduino-MAX30100. n.d. https://github.com/oxullo/Arduino-MAX30100

(accessed January 20, 2017).

IOP Institute of Physics. Explaining rms voltage and current. n.d.

http://practicalphysics.org/explaining-rms-voltage-and-current.html (accessed

February 27, 2017).

Iowegian International. “IIR Filter Basics.” dspGuru. n.d.

http://dspguru.com/dsp/faqs/iir/basics (accessed December 3, 2016).

Kennedy, Stephen M. “AN INTRODUCTION TO PULSE OXIMETERS: EQUATIONS AND

THEORY.” University of Wisconsin-Madison. 20 April 2015.

http://www.imt.liu.se/FoUtb/kurser/oxikurs/restricted/pulseoximetersequationsan

dtheory-stephenkennedy.pdf (accessed January 15, 2017).

Koblenski, Sam. Everyday DSP for Programmers: DC and Impulsive Noise Removal. 23

November 2015. http://sam-koblenski.blogspot.co.uk/2015/11/everyday-dsp-for-

programmers-dc-and.html (accessed December 4, 2016).

Lopez, Santiago. “Pulse Oximeter Fundamentals and Design.” NXP. November 2012.

http://www.nxp.com/assets/documents/data/en/application-

notes/AN4327.pdf?&tid=AMdlDR (accessed January 17, 2017).

Maxim. “Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health.” MaximIntegrated.

September 2014. https://datasheets.maximintegrated.com/en/ds/MAX30100.pdf

(accessed November 18, 2016).

Sang-Soo Oak, Praveen Aroul. “How to Design Peripheral Oxygen Saturation (SpO2) and

Optical Heart Rate Monitoring (OHRM) Systems Using the AFE4403.” TI. March 2015.

http://www.ti.com/lit/an/slaa655/slaa655.pdf (accessed December 5, 2016).

Tilakaratna, Prasanna. How pulse oximeters work explained simply. n.d.

https://www.howequipmentworks.com/pulse_oximeter/ (accessed November 22,

2016).

Vincent Chan, Steve Underwood. “A Single-Chip Pulsoximeter Design Using the MSP430.” TI.

February 2012. http://www.ti.com/lit/an/slaa274b/slaa274b.pdf (accessed January

20, 2017).

