
Control Unit
One of the basic modules for a CPU is the control unit. Our task was to design the control unit with

the following functions: sw, lw, beq, bne, j, add, sub, and, or, slt, addi. The implementation

provided by lecturer had almost all the functionality implemented except: j, bne, addi. From the

MIPS32 instruction sheet we found out the corresponding OP codes for the missing instructions.

Instruction OP Code (Hex)

J 0x02

Bne 0x05

addi 0x08

J and addi was very easy to integrate in the current design. We were able to use the existing

hardware design, however for the bne instruction we had to add some more components to the

design. Basically we added another branch data path, called “BranchNE” to the control unit.

Simulation

After we had described the behaviour of the control unit we simulated it with the OP codes for the

previously mentioned instructions.

Result

 0-10ns is R-type instruction

 10-20ns is load word instruction

 20-30ns is store word instruction

 30-40ns is branch if equals instruction

 40-50ns is jump instruction

 50-60ns is branch not equals instruction

 60-70ns is addi instruction

Conclusion

The simulation of the control unit worked just like expected. All the corresponding bits regarding the

OP code were set correctly as you can see in the simulation waveform above.

Arithmetic logic unit (ALU)
After we had a working control unit next task was to implement ALU for all the logical operations

regarding registers, like adding, subtracting, anding, oring etc. Again the lecturer provided us with a

sample ALU VHDL code. This time the provided code had all the functionality necessary for ALU, so

we didn’t need to alter it at all. However, we did split the ALU in 3 parts – Sign extender, ALU control

unit and ALU, so our final implementation would look like the provided schematic for MIPS32

processor.

ALU control unit

We implemented ALU control unit by following “ControlUnit.docx” document provided by our

lecturer. Basically the task of the ALU control unit is to specify what type of arithmetic operation the

main ALU has to carry out.

Logical /Arithmetic Operation ALUCtr[2:0]

and 000

or 001

add 010

sub 110

slt 111

Depending on the ALUOp bus provided by Control Unit and the instruction bus we had to implement

the following truth table in ALU control unit

opcode ALUOp Operation instr ALU function ALUCtr[2:0]

lw 00 Load word xxxxxx Add 010
sw 00 Store word xxxxxx Add 010
beq 01 Branch if equal xxxxxx subtract 110
R_type 10 Add 100000 Add 010

subtract 100010 Subtract 110

AND 100100 AND 000

OR 100101 OR 001
SLT 101010 Set on less than 111

Simulation

Results

 0-10ns load/store word instruction

 10-20ns branch instruction

 20-30ns add instruction

 30-40ns subtract instruction

 40-50ns AND instruction

 50-60ns OR instruction

 60-70ns SLT instruction

Conclusion

We can confirm that the simulation worked just like expected. The ALU Control unit generated

correct output for every input just like described in the truth table.

Main ALU

The actual arithmetic operations are carried out in the main ALU. For our convenience in this module

we integrated one of the MUX provided in the schematic. The one which selects between register

files “Read Data 2” output and sign extender output. Once again, the code was more or less

provided by the lecturer.

Simulation

We simulated whether the integrated MUX and all the arithmetic functions are working in the ALU.

Result

 85 – 100ns select data2 as input and perform addition

 100 – 110ns select sign extend as input and perform addition

 110 – 120ns perform AND operation

 120 – 130ns perform OR operation

 130 – 140ns perform subtraction

 140 – 150ns perform STL operation

 150-160ns perform STL operation with reversed input

 160-170ns perform subtraction with identical inputs

Conclusion

Everything worked just like expected. The ALU carried out all the arithmetic operations correctly,

and the integrated MUX was performing correctly as well.

Sign Extender

One last component we have to design is sign extender before we can combine the actual CPU. Out

lecturer provided with an example sign extender for 8 bit data bus. Only thing we had to change is

the BUS width to 32 bits. For our sign extender we used the IEEE numeric_std library.

Simulation

Sign extension HEX result

Sign extension Decimal result

Result

 0 – 10ns extended number 0x0001 to 0x00000001

 10 – 20ns extended number 0x8000 to 0xffff8000

 20 – 30ns extended number 0x00ab to 0x000000ab

 30 – 40ns extended number 0xfffa to 0xfffffffa

Conclusion

As you can see in the two waveforms shown above, the sign extensions between 2 byte number and

8 byte number is working correctly.

Single Cycle Processor implementation
At this stage we have designed all the necessary components for single cycle processor. Our next

and final task is to merge everything together and simulate the CPU. We used the following

schematic for our implementation:

However, as previously mentioned we slightly altered the branching to implement the BNE

instruction:

Simulation

After we assembled the CPU with structural VHDL, we then needed a machine code to test whether

our implementation and all the components together are working correctly. We designed a test

code on MARS, and then just copied the machine code over to our instruction memory.

Only thing we have to alter is the jump address when executing J instruction. MARS starts the code

from address 0x00400000. We start the code from the 0th address. BNE or BEQ works fine because

they are not jumping to a specific address, but it alters the PC value by the difference between

desired address and current address.

1st test code

We wrote a small test code which would test all the instructions our implementation can handle.

Code in MARS

Register values in MARS after execution

Machine code in Xilinx

X"20090064" X"ac290028" X"8c2a0028" X"112a0002" X"200b0001"

 X"08100009" X"200b0002" X"152b0002" X"012b4020" X"0810000d"

 X"012b4022" X"152afff2" X"012a6020" X"01286824" X"01287025"

 X"08000011" X"21ef2710" X"01a9782a"

Register values in Xilinx after execution

Register value comparison between MARS and Xilinx

Register MARS Xilinx

$t0 0x62 0x62

$t1 0x64 0x64

$t2 0x64 0x64

$t3 0x02 0x02

$t4 0xc8 0xc8

$t5 0x60 0x60

$t6 0x66 0x66

$t7 0x01 0x01

From the first test code we can confirm that all the necessary instructions have been implemented

correctly in our CPU design. We weren’t confident that jumping and branching instruction will work.

Despite our pessimism those two instructions were executed correctly.

2nd test code

After we confirmed that all of the instructions are executed correctly, we thought of making another

test code for calculating Fibannoci sequence and store it into the memory.

Code in MARS

Memory contents in MARS after execution

Register values in MARS after execution

Machine code in Xilinx

X"20090001" X"200a0001" X"200b0000" X"ad690000" X"216b0004"

 X"ad6a0000" X"216b0004" X"20080000" X"012a6020" X"000a4820"

 X"000c5020" X"ad6c0000" X"216b0004" X"21080001" X"2001000f"

 X"1428fff8"

Register values in Xilinx after execution

Memory contents in Xilinx after execution

Summary

As you can see in our results, both MARS and Xilinx generated the same Fibannoci sequence up to

element 17. That means iterative algorithms are working in our single cycle processor

implementation. Only problem we encountered was, that the simulation by default runs for 1 µS,

but to generate 17 elements it needs 1.375 µS. Other than that we didn’t have any problems at all.

Conclusion
We successfully managed to implement a working Single cycle processor. For us to be able to

accomplish this task we learned a lot of very useful information about how the CPU works. Now we

have much better understanding how the CPU works which includes: register file, instruction

fetcher, memory, control unit and ALU. We still can further improve this implementation with

pipelining and multiple cycles. Current design nowadays is considered to be very slow, since the

clock cycle can’t be faster than the slowest instruction, which is SW instruction for our case. Overall,

we learned a lot from this coursework and we feel satisfied with what we can now do, and we hope

to further improve our understanding how the CPU works with multiple cores.

