
Control Unit 
One of the basic modules for a CPU is the control unit. Our task was to design the control unit with 

the following functions: sw, lw, beq, bne, j, add, sub, and, or, slt, addi. The implementation 

provided by lecturer had almost all the functionality implemented except: j, bne, addi. From the 

MIPS32 instruction sheet we found out the corresponding OP codes for the missing instructions. 

 

Instruction OP Code (Hex) 

J 0x02 

Bne 0x05 

addi 0x08 

 

J and addi was very easy to integrate in the current design. We were able to use the existing 

hardware design, however for the bne instruction we had to add some more components to the 

design. Basically we added another branch data path, called “BranchNE” to the control unit.  

Simulation 

After we had described the behaviour of the control unit we simulated it with the OP codes for the 

previously mentioned instructions. 

 

Result 

 0-10ns is R-type instruction 

 10-20ns is load word instruction 

 20-30ns is store word instruction 

 30-40ns is branch if equals instruction 

 40-50ns is jump instruction 

 50-60ns is branch not equals instruction 

 60-70ns is addi instruction 



Conclusion 

The simulation of the control unit worked just like expected. All the corresponding bits regarding the 

OP code were set correctly as you can see in the simulation waveform above. 

Arithmetic logic unit (ALU) 
After we had a working control unit next task was to implement ALU for all the logical operations 

regarding registers, like adding, subtracting, anding, oring etc. Again the lecturer provided us with a 

sample ALU VHDL code. This time the provided code had all the functionality necessary for ALU, so 

we didn’t need to alter it at all. However, we did split the ALU in 3 parts – Sign extender, ALU control 

unit and ALU, so our final implementation would look like the provided schematic for MIPS32 

processor.  

ALU control unit 

We implemented ALU control unit by following “ControlUnit.docx” document provided by our 

lecturer. Basically the task of the ALU control unit is to specify what type of arithmetic operation the 

main ALU has to carry out.  

Logical /Arithmetic Operation ALUCtr[2:0] 

and 000 

or 001 

add 010 

sub 110 

slt 111 

 

Depending on the ALUOp bus provided by Control Unit and the instruction bus we had to implement 

the following truth table in ALU control unit 

opcode  ALUOp Operation  instr  ALU function  ALUCtr[2:0] 

lw 00 Load word xxxxxx Add 010 
sw 00 Store word xxxxxx Add 010 
beq 01 Branch if equal xxxxxx subtract 110 
R_type 10 Add 100000 Add 010 

subtract 100010 Subtract 110 

AND 100100 AND 000 

OR 100101 OR 001 
SLT 101010 Set on less than  111 

 

Simulation 

 



Results 

 0-10ns load/store word instruction 

 10-20ns branch instruction 

 20-30ns add instruction 

 30-40ns subtract instruction 

 40-50ns AND instruction 

 50-60ns OR instruction 

 60-70ns SLT instruction 

Conclusion 

We can confirm that the simulation worked just like expected. The ALU Control unit generated 

correct output for every input just like described in the truth table. 

Main ALU 

The actual arithmetic operations are carried out in the main ALU. For our convenience in this module 

we integrated one of the MUX provided in the schematic. The one which selects between register 

files “Read Data 2” output and sign extender output. Once again, the code was more or less 

provided by the lecturer.  

Simulation 

We simulated whether the integrated MUX and all the arithmetic functions are working in the ALU. 

 

Result 

 85 – 100ns select data2 as input and perform addition 

 100 – 110ns select sign extend as input and perform addition 

 110 – 120ns perform AND operation 

 120 – 130ns perform OR operation 

 130 – 140ns perform subtraction 

 140 – 150ns perform STL operation 



 150-160ns perform STL operation with reversed input 

 160-170ns perform subtraction with identical inputs 

Conclusion 

Everything worked just like expected. The ALU carried out all the arithmetic operations correctly, 

and the integrated MUX was performing correctly as well. 

Sign Extender 

One last component we have to design is sign extender before we can combine the actual CPU. Out 

lecturer provided with an example sign extender for 8 bit data bus. Only thing we had to change is 

the BUS width to 32 bits. For our sign extender we used the IEEE numeric_std library. 

Simulation 

Sign extension HEX result 

 

Sign extension Decimal result 

 

Result 

 0 – 10ns extended number 0x0001 to 0x00000001 

 10 – 20ns extended number 0x8000 to 0xffff8000 

 20 – 30ns  extended number 0x00ab to 0x000000ab 

 30 – 40ns extended number 0xfffa to 0xfffffffa 

 

Conclusion 

As you can see in the two waveforms shown above, the sign extensions between 2 byte number and 

8 byte number is working correctly.  

  



Single Cycle Processor implementation 
At this stage we have designed all the necessary components for single cycle processor. Our next 

and final task is to merge everything together and simulate the CPU. We used the following 

schematic for our implementation: 

 

 

However, as previously mentioned we slightly altered the branching to implement the BNE 

instruction: 

 



Simulation 

After we assembled the CPU with structural VHDL, we then needed a machine code to test whether 

our implementation and all the components together are working correctly. We designed a test 

code on MARS, and then just copied the machine code over to our instruction memory. 

Only thing we have to alter is the jump address when executing J instruction. MARS starts the code 

from address 0x00400000. We start the code from the 0th address. BNE or BEQ works fine because 

they are not jumping to a specific address, but it alters the PC value by the difference between 

desired address and current address. 

 

1st test code 

We wrote a small test code which would test all the instructions our implementation can handle. 

Code in MARS 

 

 

 

 

 

 



Register values in MARS after execution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Machine code in Xilinx 

X"20090064" X"ac290028" X"8c2a0028" X"112a0002" X"200b0001"

 X"08100009" X"200b0002" X"152b0002" X"012b4020" X"0810000d"

 X"012b4022" X"152afff2" X"012a6020" X"01286824" X"01287025"

 X"08000011" X"21ef2710" X"01a9782a" 

 

 

 

 

 

 

 

 



Register values in Xilinx after execution 

 

Register value comparison between MARS and Xilinx 

Register MARS Xilinx 

$t0 0x62 0x62 

$t1 0x64 0x64 

$t2 0x64 0x64 

$t3 0x02 0x02 

$t4 0xc8 0xc8 

$t5 0x60 0x60 

$t6 0x66 0x66 

$t7 0x01 0x01 

 

From the first test code we can confirm that all the necessary instructions have been implemented 

correctly in our CPU design. We weren’t confident that jumping and branching instruction will work. 

Despite our pessimism those two instructions were executed correctly. 



2nd test code 

After we confirmed that all of the instructions are executed correctly, we thought of making another 

test code for calculating Fibannoci sequence and store it into the memory. 

Code in MARS 

 

 

Memory contents in MARS after execution 

 

 

 

 

 

 

 

 



Register values in MARS after execution 

 

Machine code in Xilinx 

X"20090001" X"200a0001" X"200b0000" X"ad690000" X"216b0004"

 X"ad6a0000" X"216b0004" X"20080000" X"012a6020" X"000a4820"

 X"000c5020" X"ad6c0000" X"216b0004" X"21080001" X"2001000f" 

 X"1428fff8" 

  



Register values in Xilinx after execution 

 

Memory contents in Xilinx after execution 

  



Summary 

As you can see in our results, both MARS and Xilinx generated the same Fibannoci sequence up to 

element 17. That means iterative algorithms are working in our single cycle processor 

implementation. Only problem we encountered was, that the simulation by default runs for 1 µS, 

but to generate 17 elements it needs 1.375 µS. Other than that we didn’t have any problems at all. 

Conclusion 
We successfully managed to implement a working Single cycle processor. For us to be able to 

accomplish this task we learned a lot of very useful information about how the CPU works. Now we 

have much better understanding how the CPU works which includes: register file, instruction 

fetcher, memory, control unit and ALU. We still can further improve this implementation with 

pipelining and multiple cycles. Current design nowadays is considered to be very slow, since the 

clock cycle can’t be faster than the slowest instruction, which is SW instruction for our case. Overall, 

we learned a lot from this coursework and we feel satisfied with what we can now do, and we hope 

to further improve our understanding how the CPU works with multiple cores. 


