Control Unit

One of the basic modules for a CPU is the control unit. Our task was to design the control unit with
the following functions: sw, lw, beq, bne, j, add, sub, and, or, slt, addi. The implementation
provided by lecturer had almost all the functionality implemented except: j, bne, addi. From the
MIPS32 instruction sheet we found out the corresponding OP codes for the missing instructions.

Instruction OP Code (Hex)
J 0x02
Bne 0x05
addi 0x08

J and addi was very easy to integrate in the current design. We were able to use the existing
hardware design, however for the bne instruction we had to add some more components to the
design. Basically we added another branch data path, called “BranchNE” to the control unit.

Simulation

After we had described the behaviour of the control unit we simulated it with the OP codes for the
previously mentioned instructions.

T e e e e
B opcode[5:0] 08 -n_l-'-l-l-l--_l-
1o [o | 1 X [o 0¥ [1 X | o |

5§ aluop[1:0] 1]

1 regdst - T T
g alusrc

s memtoreg
g regwrite

s memread

s memwrite
% jump

L branchne
L branch

Result

e (0-10nsis R-type instruction

e 10-20ns is load word instruction

e 20-30ns is store word instruction

e 30-40ns is branch if equals instruction

e 40-50ns is jump instruction

e 50-60ns is branch not equals instruction

e 60-70ns is addi instruction

Conclusion

The simulation of the control unit worked just like expected. All the corresponding bits regarding the
OP code were set correctly as you can see in the simulation waveform above.

Arithmetic logic unit (ALU)

After we had a working control unit next task was to implement ALU for all the logical operations
regarding registers, like adding, subtracting, anding, oring etc. Again the lecturer provided us with a
sample ALU VHDL code. This time the provided code had all the functionality necessary for ALU, so
we didn’t need to alter it at all. However, we did split the ALU in 3 parts — Sign extender, ALU control
unit and ALU, so our final implementation would look like the provided schematic for MIPS32
processor.

ALU control unit

We implemented ALU control unit by following “ControlUnit.docx” document provided by our
lecturer. Basically the task of the ALU control unit is to specify what type of arithmetic operation the
main ALU has to carry out.

Logical /Arithmetic Operation ALUCtr[2:0]
and 000
or 001
add 010
sub 110
slt 111

Depending on the ALUOp bus provided by Control Unit and the instruction bus we had to implement
the following truth table in ALU control unit

opcode ALUOp Operation instr ALU function ALUCtr[2:0]
lw 00 Load word XXXXXX Add 010
swW 00 Store word XXXXXX Add 010
beq 01 Branch if equal XXXXXX subtract 110
R_type 10 Add 100000 Add 010
subtract 100010 Subtract 110
AND 100100 AND 000
OR 100101 OR 001
SLT 101010 Set on less than 111
Simulation

Name
5 24 aluop[1:0]
_.'__'__,_
[9 instr{5:0] mﬁ—l 100000 . .l.
o ||1H 11” H1II 11“ \|||1 111

5 2 aluctr[2:0] ‘ ‘ ‘ ‘ ‘ ‘

Results

e 0-10ns load/store word instruction
e 10-20ns branch instruction

e 20-30ns add instruction

e 30-40ns subtract instruction

e 40-50ns AND instruction

e 50-60ns OR instruction

e 60-70ns SLT instruction

Conclusion

We can confirm that the simulation worked just like expected. The ALU Control unit generated
correct output for every input just like described in the truth table.

Main ALU

The actual arithmetic operations are carried out in the main ALU. For our convenience in this module
we integrated one of the MUX provided in the schematic. The one which selects between register
files “Read Data 2” output and sign extender output. Once again, the code was more or less
provided by the lecturer.

Simulation

We simulated whether the integrated MUX and all the arithmetic functions are working in the ALU.

mm il 7 mmtmmm—

i —————— e ————
, nded[3 _ 1
¢ _
iy y 3 ::'
[24 alu_result[31:0] 00000000 -IEIIIIII_|IIIIIIII[| | | 7

Result

e 85 -100ns select data2 as input and perform addition

e 100 -110ns select sign extend as input and perform addition
e 110-120ns perform AND operation

e 120 -130ns perform OR operation

e 130 -140ns perform subtraction

e 140 - 150ns perform STL operation

e 150-160ns perform STL operation with reversed input

e 160-170ns perform subtraction with identical inputs

Conclusion

Everything worked just like expected. The ALU carried out all the arithmetic operations correctly,
and the integrated MUX was performing correctly as well.

Sign Extender

One last component we have to design is sign extender before we can combine the actual CPU. Out
lecturer provided with an example sign extender for 8 bit data bus. Only thing we had to change is
the BUS width to 32 bits. For our sign extender we used the IEEE numeric_std library.

Simulation

Sign extension HEX result

[& input[15:0]
[5 output[31:0]

Name
[& input[15:0]
5 output[31:0]

Result

e 0-10ns extended number 0x0001 to 0x00000001

e 10 -20ns extended number 0x8000 to Oxffff8000

e 20-30ns extended number 0x00ab to 0x000000ab
e 30-40ns extended number Oxfffa to Oxfffffffa

Conclusion

As you can see in the two waveforms shown above, the sign extensions between 2 byte number and
8 byte number is working correctly.

Single Cycle Processor implementation

At this stage we have designed all the necessary components for single cycle processor. Our next
and final task is to merge everything together and simulate the CPU. We used the following
schematic for our implementation:

Jump Offset
1
]
Instr[25-0] v/ | 1
(Shift™ % W
\ | 28 32
26 \eft 2/
| = 7 petal3i-28]
I‘:Add]
a—s 7 Branch Offset
' 7N " jum
2 Branch T MemRead
B Inst] 31—2|5] Control | MemtoHeg
2 | Unit WemWrite
ALUSrc
m RegDst RegWrite
3 | Zero MemWrite !
e« nstr[25-21] Read Addr 1
Instruction o Read Address
Memory nstr[20-16] fo 4 E;gr";er Data 1 zZero 5
Read . ata
PC Instr[31-0] == 0 File — Memory ReadData T
nddress \Write Addr fead I\O ALU Y
1 ea
Instr[1 Data 2| [Write Data 0
nstr Write Data /
-11] A
ALUCH |3
MemRead
Iinstr{15:4 \ @ \ [aw
T v [
A 16 Extend 32 |:|:|ni:r|:||_-I
Clk ALUOp |- Instr[5-0] ~
. 12 I
Instruction
Fetch Single Cvcle MIPS 32 Processor

However, as previously mentioned we slightly altered the branching to implement the BNE
instruction:

"-..__IBranch NE

| Control | _D)_L] PCSrc
| Unit |Branch |

Zero

Iero

ALU

Simulation

After we assembled the CPU with structural VHDL, we then needed a machine code to test whether
our implementation and all the components together are working correctly. We designed a test
code on MARS, and then just copied the machine code over to our instruction memory.

Only thing we have to alter is the jump address when executing J instruction. MARS starts the code
from address 0x00400000. We start the code from the 0™ address. BNE or BEQ works fine because
they are not jumping to a specific address, but it alters the PC value by the difference between
desired address and current address.

1st test code

We wrote a small test code which would test all the instructions our implementation can handle.

Code in MARS

1 .data

2 number: word 0O

3 .text

4

5 main:

[addi §tcl, 50, 100
7 sw 5tl, number

8 1w 5t2, number

9

10 beg stl, $t2, loadZ
11 addi 3, 50, 1
12 j skipl

13

14 lead2: addi $t3, 50, 2
15

16 skipl: bne $tl, 5t3, subtract
17 add st0, stl, €3
18 j skipZ

19

20 subtract:

2 sub t0, §tl, t3

skip2: bne $tl, $tI, main
add st4, stl, St

and §t5, §tl, §t0
or §té, §tl, st

LRI T S N T L T I S S)
DD 00 =] o D s L Ra

j setless
addi §t7, §t7, 10000
31
32 setless:
33 slt 5t7, §t5, stl
34
35

Register values in MARS after execution

f Registers r Coproc 1 r{:oprocl} |

MName MNumber Yalue

£zero 1] 0x00000000
zat 1 0x10010000
&vo 2 0x00000000
svl 3 0x00000000
zal 4 0x00000000
zal 5 0x00000000
sad & 0x00000000
za3 7 0x00000000
st0 g 0x0000008&2
stl 9 0x00000064
st2 10 0x00000064
2L3 11 0x00000002
std 12 0x000000cE
] 13 0x000000&0
sth 14 0x000000646
st7 15 0x00000001
£30 14 0x00000000
£zl 17 0x00000000
£32 18 0x00000000
£33 19 0x00000000
£34 20 0x00000000
£35 21 0x00000000
38 22 0x00000000
£37 23 0x00000000
] 24 0x00000000
sto 25 0x00000000
£k0 26 0x00000000
£kl 27 0x00000000
£gp 28 0x10008000
£3p 249 0xT7fffeffc
£fp 30 0x00000000
sra 3 0x00000000
BC 0x00400050
hi 0x00000000
lo 0x00000000
Machine code in Xilinx

X'"20090064" X"ac290028" X"8c2a0028" X"112a0002" X"200b0OOO1"
X"08100009" X"200b0002" X"152b0002" X"012b4020" X"0810000d"
X"012b4022" X"152afff2" X"012a6020" X"01286824" X"01287025"
X"08000011" X"21ef2710" X"01a9782a"

Register values in Xilinx after execution

&3 at reg[31:0] 00000000 Array
& a0 _reg[31:0] 00000000 Array
&3 al reg[31:0] 00000000 Array
% a2_reg[31:0] 00000000 Array
% a3_reg[31:0] 00000000 Array
53 E[31:0] 00000001 Array
% fp_reg[31:0] 00000000 Array
B4 gp_reg[31.0] 00000000 Array
% k0_reg[31:0] 00000000 Array
% k1_reg[31:0] 00000000 Array
&% ra_reg[31:0] 00000000 Array
9§ sp_reg[31.0] 00000000 Array
% sD_reg[31:0] 00000000 Array
% sl reg[31:0] 00000000 Array
% s2_reg[31:0] 00000000 Array
% s3_reg[31:0] 00000000 Array
% sd reg[31:0] 00000000 Array
% s5_reg[31:0] 00000000 Array
% sb_reg[31:0] 00000000 Array
% s7_reg[31:0] 00000000 Array
% t0_reg[31:0] 00000062 Array
9§ t1_reg[31:0] 00000064 Array
% t2_reg[31:0] 00000064 Array
9§ t3_reg[31:0] 00000002 Array
% t4 reg[31:0] 0©000000c8 Array
9§ t5_reg[31:0] 00000060 Array
% t6_reg[31:0] 00000066 Array
9§ t7_reg[31:0] 00000001 Array
% t&_reg[31:0] 00000000 Array
% t9_reg[31:0] 00000000 Array
% v0_reg[31:0] 00000000 Array
% vl_reg[31:0] 00000000 Array
&4 zero_reg[31.. 00000000 Array

Register value comparison between MARS and Xilinx

Register MARS Xilinx
Sto 0x62 0x62
st1 0x64 0x64
$t2 Ox64 0x64
st3 0x02 0x02
sta Oxc8 Oxc8
$t5 0x60 0x60
St6 0x66 0x66
St7 0x01 0x01

From the first test code we can confirm that all the necessary instructions have been implemented
correctly in our CPU design. We weren’t confident that jumping and branching instruction will work.
Despite our pessimism those two instructions were executed correctly.

2nd test code

After we confirmed that all of the instructions are executed correctly, we thought of making another
test code for calculating Fibannoci sequence and store it into the memory.

Code in MARS

1 .data

2 fibs: .word 0: 10 #
3 .text

4

5 main:

& addi stl, s0, 1
7 addi $t2, 50, 1
i

g addi $t3, %0, O
10

11

12 sw Stl, (5t3)

13 addi $t3, $t3, 4
14 sw StI, (§t3)

15 addi $t3, $t3, 4
16

17 addi sto, %0, O
18

13 loop:

20 add st4, stl, Ftl
21 add $tl, 50, $t2
22 add $tZ, 50, §td
23

24 sw $td, (5t3)

25 addi $t3, $t3, 4
26

27 addi $t0, $t0, 1
28

29 bne $t0, 15, loop
30

31

27

Memory contents in MARS after execution

] Data Segment 35

Address Value (+0) WValue (+4) Value (+8) WValue (+c) Walue (+10) Value (+14) WValue (+18)
1 3 5 8l 13

0x10010000]

olo|o|olo|slol ol ool o|a| &«

124 233 377 610 987,

0x10010020 34
0x10010040) 1597
0x10010060] 0
0x10010050 0
0x100100a0 0
0x100100c0 0
0x10010080 0
0x10010100 0
0
0|
a
a
a

0x10010120
0%10010120)
0x10010160)

0x10010180)
0x100101a0]
I

ol ol o] olo| o o] ol o| ool 2|

ole|ofo|olelelalo|s| ol o
o|o|ofa|olsl ool o|s|o|al
olo|o|a|olslolalo|a|o|al

[4]

| @ | L H0x10010000{.dam) "‘ i] values []AsCH

Register values in MARS after execution

:f Reqgisters |/Coproc1 |/Coproci} |
: MName Mumber Value
szero i 0
isat 1 15
i|[gw0 Z i
illgwl 3 i
i|[#a0 1 i
igal 5 i
i|[saz & i
i|sa3 7 i
i|szo B 15
i [9 987
H [10 1597
i|st3 11 268501060
i|sca 12 1597
ists 13 i
i|sca 14 i
i|se7 15 i
i|[g=0 16 i
iga1 17 i
i|[gaz 18 i
HIEEE 19 i
i|[za4 20 i
HIEEE 21 i
HIEE 22 i
iga7 23 i
H | 24 i
i|ste 25 i
i|[#x0 26 i
i 27 i
i|sap 28 268468224
i|s2p FE] 2147479548
i|sEp 30 il
i|sza 3l il
i|lpe 4194372
ini il
1o il
Machine code in Xilinx

X"20090001" X"200a0001" X"200b0O0O0O0O" X"ad690000"

X"ad6a0000" X"216b0004" X"20080000" X"012a6020"

X"000c5020" X"ad6c0000" X"216b0004" X'"21080001"

X"1428fff8"

X"216b0004"
X"000a4820"
X"2001000f"

Register values in Xilinx after execution

Object Name Value Data Type
[@5 RS_OUT[31:0] © Array
|- &5 RT_OUT[31:0] © Array
[~ &g atreg[31:0] 15 Array
|- B a0_reg[31:0] © Array
[~ &% al_reg[310] O© Array
[B a2_reg[310] O© Array
[~ & a3_reg[310] © Array
- B E[31.0] 1 Array
[& fp_reg(31:0] © Array
|- B gp_reg[310] © Array
[&% kD_reg[31:0] © Array
- 3% Kl_reg[31:0] © Array
[~ 3% ra_reg(31:0] © Array
|- B sp_reg[310] © Array
[&g sD_reg[31:0] © Array
[B s1reg[31:0] © Array
[& s2 reg[31:0] © Array
|- B s3_reg[31:0] © Array
[~ & s4reg[31:0] © Array
|- B s5_reg[310] © Array
[& sh_reg[310] O Array
|- B 57 _reg[310] © Array
[& t0_reg[31:0] 15 Array
|- B ti_reg[31:0] 987 Array
|- & t2_reg[31:0] 1597 Array
|- B t3_reg[3l0] &8 Array
[~ & t4_reg[31:0] 1537 Array
|- B t5_reg[310] o© Array
|- & t6_reg[310] © Array
|- B t7_reg[310] © Array
|- & t8reg[310] © Array
|- B t9_reg[310] o© Array
[~ &% v0_reg[310] © Array
- B vi_reg[310] © Array
I~ B zero_reg[31.. © Array

Memory contents in Xilinx after execution

0 1 2
OxFF
0xF7
OXEF
OXE7
0xDF
0xD7
0xCF
0xC7
0xBF
0xB7
OxAF
0xA7
0x9F
0x97
0x8F
0x87
0x7F
0x77
0x6F
0x67
0x5F
0x57
0x4F
0x47
0x3F
0x37
0x2F
0x27

=1

Ox1F

OxF
0x7

oo 0000 0000000000000 0O000000000

287
21

D WO 000 0000000000000 000000000000o0

)

Moo Ho 0000000 0000000000000 00000o0

WwH OO Do OO0 000000000000 0000000000oo

MDD O DD D0 DD 00D D0 DD 0000000000000 0O

)

s ol ofe oo oo olojojolo|oo|e|o|o|o|o|o|olo|oololololololo
@

Summary

As you can see in our results, both MARS and Xilinx generated the same Fibannoci sequence up to
element 17. That means iterative algorithms are working in our single cycle processor
implementation. Only problem we encountered was, that the simulation by default runs for 1 S,
but to generate 17 elements it needs 1.375 pS. Other than that we didn’t have any problems at all.

Conclusion

We successfully managed to implement a working Single cycle processor. For us to be able to
accomplish this task we learned a lot of very useful information about how the CPU works. Now we
have much better understanding how the CPU works which includes: register file, instruction
fetcher, memory, control unit and ALU. We still can further improve this implementation with
pipelining and multiple cycles. Current design nowadays is considered to be very slow, since the
clock cycle can’t be faster than the slowest instruction, which is SW instruction for our case. Overall,
we learned a lot from this coursework and we feel satisfied with what we can now do, and we hope
to further improve our understanding how the CPU works with multiple cores.

